All Title Author
Keywords Abstract

Publish in OALib Journal
ISSN: 2333-9721
APC: Only $99


Weld Metal Dendritic Structure Modification by Dispersed Refractory Oxide Particles

DOI: 10.4236/oalib.1107429, PP. 1-15

Subject Areas: Metal Material

Keywords: Arc Welding, Low-Alloy Steel, Weld Metal, Modification by Refractory Oxides, Dendrite Structure, Mechanical Properties

Full-Text   Cite this paper   Add to My Lib


The paper deals with the modification effect of dispersed oxides particles (Al2O3, MgO, ZrO) on the dendrite structure in low-alloy weld metal. The flux-core wire 1.6 mm diameter for inoculating of oxides powder to weld pool was purposed. Obtained results confirmed an influence of inoculated refractory oxides on dendrites size and morphology, microstructure and mechanical properties of the weld metal.

Cite this paper

Holovko, V. V. , Stepanyuk, S. M. and Yermolenko, D. Y. (2021). Weld Metal Dendritic Structure Modification by Dispersed Refractory Oxide Particles. Open Access Library Journal, 8, e7429. doi:


[1]  Bhadeshia, H.K.D.H. and Svensson, L.-E. (1993) Modelling the Evolution of Microstructure in Steel Weld Metals, Mathematical Modelling of Weld Phenomena. Institute of Materials, London, 109-182.
[2]  Yang, Z. and Debroy, T. (1999) Modeling Macro- and Microstructures of Gas-Metal-Arc Welded HSLA-100 Steel. Metallurgical and Materials Transactions B, 30, 483-493.
[3]  Zhao, J.-C. and Notis, M.R. (1995) Continuous Cooling Transformation Kinetics versus Isothermal Transformation Kinetics of Steels: A Phenomenological Rationalization of Experimental Observations. Materials Science and Engineering: R: Reports, 15, 135-207.
[4]  Fujiyama, N., Nishibata, T., Seki, A., Hirata, H., Kozjima, K. and Ogawa, K. (2017) Austenite Grain Growth Simulation Considering the Solute-Drag Effect and Pinning Effect. Science and Technology of Advanced Materials, 18, 88-95.
[5]  Moon, S., Dippenaar, R. and Kim, S. (2015) The Peritectic Phase Transition of Steel during the Initial Stages of Solidification in the Mold. 2015 AISTech Conference Proceedings, AISTech, United States, 3338-3350
[6]  Long, M., Zhang, L. and Lu, F. (2010) Simple Model to Calculate Dendrite Growth Rate during Steel Continuous Casting Process. ISIJ International, 50, 1792-1796.
[7]  Holovko, V.V. (2018) Possibilities of Nanomodification of Dendrite Structure of Weld Metal. The Paton Welding Journal, No. 8, 2-6.
[8]  Novokhatsky, L.A. and Yaroshenko, I.V. (1988) Peculiarities of Cluster Adsorption on Nonmetallic Inclusions in Liquid Steel. Ti: Odesskogo Politeklvucheskogo Univetsiteta, 1, 241-244. (In Russian)
[9]  Yaroshenko, I.V., Novokhatsky, I.A. and Kisunko, V.Z. (1999) Influence of Cluster Adsorption on Viscous Flow of Metallic Liquids in Near-Wall Layers. Trudy Odesskogo politehniceskogo universiteta, 2, 241-244. (In Russian)
[10]  Ershov, G.S. and Chernyakov, V.A. (1978) Structure and Properties of Liquid and Solid Metals. Moscow, Metallurgiya. (In Russian)
[11]  Hubenko, S.I., Parusov, V.V. and Derevjanchenko, I.V. (2005) Non-Metallic Inclusions in Steel. АRТ-PRESS Dnepr, 536. (In Russian)
[12]  Jasukov, V.V., Lysenko, T.V., Kosishkurt, Е.N. and Solonenko, L.I. (2018) The Processes of Crystallization and Solidification of Castings in One-Time Casting Molds. Metal and Casting of Ukraine, No. 11-12, 54-59. (In Russian)
[13]  Sokolov, G.N., Lysak, V.I., Zorin, I.V., et al. (2015) Phenomenological Model of the Formation of Crystallization Centers in a Metal Melt during Welding under the Influence of Ultrafine Refractory Components. Materials Science Issues, No. 4, 159-168. (In Russian)
[14]  Stecenko, V.J. (2013) Mechanisms of the Crystallization Process of Metals and Alloys and Metallurgy. Casting, No. 1, 48-54. (In Russian)
[15]  Hanao, M. (2020) Eperimental Evaluation of Interfacial Free Energy of Solid Iron. ISIJ International, 60, 436-441.
[16]  Yaroshenko, I.V. (2000) Peculiarities of Manifestation and Taking into Account of Cluster Adsorption in Metallic Liquids Near Surface of Oxide Phases. Odessа Polytechnic State University, Odessa. (In Russian)
[17]  Marukovich, E.I. and Stetsenko, V.Y. (2017) Nanostructured Processes of Casting and Casting of Cast Iron with Lamellar Graphite. Casting and Metallurgy, No. 1, 7-10.
[18]  Ladyanov, V.I., Novokhatsky, I.A. and Logunov, S.V. (1995) Estimation of the Lifetime of Clusters in Liquid Metals. Izv. RAS. Metals, No. 2, p.13-22.
[19]  Novokhatsky, I.A., Schulte, A.Y. and Yaroshenko, I.V. (2001) Forms of Existence and the Emergence of Oxide Dispersions in Liquid Metals. Izv. Universities. Ferrous Metallurgy, No. 9, 3-7.


comments powered by Disqus

Contact Us