All Title Author
Keywords Abstract

Publish in OALib Journal
ISSN: 2333-9721
APC: Only $99


Simulation of Fall Armyworm (Spodoptera frugiperda) Attacks and the Compensative Response of Quality Protein Maize (Zea mays, var. Mudishi-1 and Mudishi-3) in Southwestern DR Congo

DOI: 10.4236/oalib.1107217, PP. 1-14

Subject Areas: Agricultural Science

Keywords: QPM, Yield Losses, Growth Stage, FAW, Rate Damage

Full-Text   Cite this paper   Add to My Lib


In this paper, to assess the varietal ability to compensate defoliation damage caused by the fall armyworm, a trial was carried out at the INERA Mvuazi research center. The aim of this study was to determine the limit threshold of damage that could cause the significant loss of the harvest of the quality protein maize distributed in the Democratic Republic of the Congo. To do this, three factors including two varieties (Mudishi-1 and Mudishi-3) of quality protein maize, four rating damage and two growth stages were used into a factorial design with 3 replications. Simulation of damage caused by FAW consisted of cutting of blades for all visible leaves of plants. Damage rates simulating leaf destroying were 0%, 25%, 50%, 75% and 100%, occurring at two growth stages: stage V3 (2 to 4 weeks after emergence) and stage V7 (flowering stage). Results showed that damage factor combined with growth stage factor significantly influenced (p < 0.05) the yield component variables including yield losses, harvest rate, ear sizes, number of ears harvested and yield as well as the market quality of the ears, based on appearance quotation. Damage rate more than 50%, at all growth stages studied, caused grain losses upper than 50% regardless of variety. However, damage less than 50% at V3 stage resulted in grain losses under 10%. At the end of this study, we showed that the varieties of maize QPM (Mudishi-1 and Mudishi-3) would be able to compensate the damage caused by the FAW and achieve its yield, if the attacks damaging 25% of the leaves occur during V3.

Cite this paper

Tshiabukole, J. P. K. , Khonde, G. P. , Phongo, A. M. , Ngoma, N. , Kankolongo, A. M. , Vumilia, R. K. and Djamba, A. M. (2021). Simulation of Fall Armyworm (Spodoptera frugiperda) Attacks and the Compensative Response of Quality Protein Maize (Zea mays, var. Mudishi-1 and Mudishi-3) in Southwestern DR Congo. Open Access Library Journal, 8, e7217. doi:


[1]  Sparks, A.N. (1979) A Review of the Biology of the Fall Armyworm. The Florida Entomologist, 62, 82-87.
[2]  Pashley, D.P. (1988) Current Status of Fall Armyworm Host Strains. The Florida Entomologist, 71, 227-234.
[3]  Buntin, G.D. (1986) A Review of Plant Response to Fall Armyworm, Spodoptera frugiperda (J. E. Smith), Injury in Selected Field and Forage Crops. The Florida Entomologist, 69, 549.
[4]  Wyckhuys, K.A.G. and O’Neil, R.J. (2006) Population Dynamics of Spodoptera frugiperda Smith (Lepidoptera: Noctuidae) and Associated Arthropod Natural Enemies in Honduran Subsistence Maize. Crop Protection, 25, 1180-1190.
[5]  FAO and CABI (2019) Community-Based Fall Armyworm (Spodoptera frugiperda) Monitoring, Early Warning and Management, Training of Trainers Manual. 1st Edition, Food and Agriculture Organization of the United Nations, Rome.
[6]  FAO (2017) Note d’information du Groupe Inter Bailleurs pour l’Agriculture et le Développement Rural en République démocratique du Congo sur la che[10]Nille légionnaire d’automne.[10]Nilles-legionnaires-sur-les-cultures-de-mais.html
[7]  Hruska, A.J. and Gladstone, S.M. (1988) Effect of Period and Level of Infestation of the Fall Armyworm, Spodoptera frugiperda, on Irrigated Maize Yield. The Florida Entomologist, 71, 249.
[8]  Aguire, L.A., Hernández-Juàrez, A., Flores, M., Cerna, E., Landeros, J., Frías, G.A. and Harris, M. K. (2016) Evaluation of Foliar Damage by Spodoptera frugiperda (Lepidoptera: Noctuidae) to Genetically Modified Corn (Poales: Poaceae) in Mexico. Florida Entomologist, 99, 276-280.
[9]  Cruz, I., Figueiredo, M.L.C., Oliveira, A.C. and Vasconcelos, C.A. (1999) Damage of Spodoptera frugiperda (Smith) in Different Maize Genotypes Cultivated in Soil under Three Levels of Aluminium Saturation. International Journal of Pest Management, 45, 293-296.
[10]  Ni, X., Xu, W., Blanco, M.H. and Williams, W.P. (2014) Evaluation of Fall Armyworm Resistance in Maize Germplasm Lines Using Visual Leaf Injury Rating and Predator Survey. Insect Science, 21, 541-555.
[11]  Baubron, F., Zaman-Allah, M.A., Chaipa, I., Chari, N. and Chinwada, P. (2019) Understanding the Factors Influencing Fall Armyworm (Spodoptera frugiperda J.E. Smith) Damage in African Smallholder Maize Fields and Quantifying Its Impact on Yield. A Case Study in Eastern Zimbabwe. Crop Protection, 120, 141-150.
[12]  Midega, C.A.O., Pittchar, J.O., Pickett, J.A., Hailu, G.W. and Khan, Z.R. (2018) A Climate-Adapted Push-Pull System Effectively Controls Fall Armyworm, Spodoptera frugiperda (J E Smith), in Maize in East Africa. Crop Protection, 105, 10-15.
[13]  CABI (2019) Fall Armyworm (FAW) in “Invasive Species Compendium”.
[14]  Goergen, G., Kumar, P.L., Sankung, S.B., Togola, A. and Tamò, M. (2016) First Report of Outbreaks of the Fall Armyworm Spodoptera frugiperda (J E Smith) (Lepidoptera, Noctuidae), A New Alien Invasive Pest in West and Central Africa. PLoS ONE, 11, e0165632.
[15]  Nagoshi, R.N., Meagher, R.L. and Hay-Roe, M. (2012) Inferring the Annual Migration Patterns of Fall Armyworm (Lepidoptera: Noctuidae) in the United States from Mitochondrial Haplotypes. Ecology and Evolution, 2, 1458-1467.
[16]  Abrahams, P., Bateman, M., Beale, T., Clottey, V., Cock, M., Colmenarez, Y., Corniani, N., Day, R., Early, R., Godwin, J., Gomez, J., Moreno, G.P., Murphy, S.T., Oppong-Mensah, B., Phiri, N., Pratt, C., Richards, G., Silvestri, S. and Witt, A. (2017) Fall Armyworm: Impacts and Implications for Africa. Outlooks on Pest Management, 28, 196-201.
[17]  Day, R., Abrahams, P., Bateman, M., Beale, T., Clottey, V., Cock, M., Colmenarez, Y., Natalia, C., Early, R., Godwin, J., Gomez, J., Moreno, P.G., Murphy, S.T., Oppong-Mensah, B., Phiri, N., Pratt, C., Richards, G., Silvestri, S. and Witt, A. (2017) Fall Armyworm: Impacts and Implications for Africa. Outlooks on Pest Management, 28, 196-201.
[18]  Kumela, T., Simiyu, J., Sisay, B., Likhayo, P., Mendesil, E., Gohole, L. and Tefera, T. (2019) Farmers’ Knowledge, Perceptions, and Management Practices of the New Invasive Pest, Fall Armyworm (Spodoptera frugiperda) in Ethiopia and Kenya. International Journal of Pest Management, 65, 1-9.
[19]  FAO (2018) Gestion intégrée de la chenille légionnaire d’automne sur le maïs. Un guide pour les champs-écoles des producteurs en Afrique. Organisation des Nations Unies pour l’alimentation et l’agriculture, Rome, 136.
[20]  Prasanna, B.M., Huesing, J.E., Eddy, R. and Peschke, V.M. (2018) Fall Armyworm in Africa: A Guide for Integrated Pest Management. 2018. Vii, 109 pages: il. México. CIMMYT. USAID.
[21]  Tshaibukole, J.P.K. (2018) Evaluation de la sensibilité aux stress hydriques du maïs (Zea mays L.) cultivé dans la savane du Sud-Ouest de la RD Congo, cas de Mvuazi. Université Pédagogique Nationale, Democratic Republic of the Congo.
[22]  Köppen, W. (1936) Das Geographische System der Klimate. In: Köppen W. and Geiger, H., Eds., Handbuch der Klimatologie, Gebr, Borntraeger, Berlin, 1-44.
[23]  Fakorede, M.A.B., Badu-Apraku, B., Kamara, A.Y., Menkir, A., and Ajala, S.O. (2003) Maize Revolution in West and Central Africa. An Overview Proceedings of a Regional Maize Workshop, IITA-Cotonou, Republic of Benin, date, 14-1.
[24]  FAO (1997)
[25]  Kabongo, T., Pongi, K., Mumba, J., Mbuya, K., Kizungu, V. and Kabwe, K. (2016) A Evaluation of Maize Sensitivity in Southwestern Savannah Area of DR Congo. African Journal of Agricultural Science and Technology, 4, 812-817.
[26]  Mbuya, K., Nkongolo, K.K., Narendrula, R., Kalonji-Mbuyi, A. and Kizungu, R.V. (2010) Participatory Selection and Characterization of Quality Protein Maize (QPM) Varieties in Savanna Agroecological Region of DR-Congo. Journal of Plant Breeding and Crop Science, 2, 325-332.
[27]  Dhopte, A.M. (1984) Effect of Simulated Damage Done to Maize Plants by Voedeer (Caprolus). Field Crops Research, 37, 111-114.
[28]  Jones, R.J. and Simmons, S.R. (1983) Effect of Altered Source-Sink Ratio on Growth of Maize Kernels. Crop Science, 23, 129-134.
[29]  Minami, M. (1991) Analytical Studies on High Yielding Ability of Hybrid Maize (Zea mays L.) from the Standing Point of Development Morphology. Journal of the Faculty of Agriculture Shinshu University, 24, 155-164.
[30]  Mouhamed, S.G.A. and Ouda, S.A.H. (2006) Predicting the Role of Some Weather Parameters on Maize Productivity under Different Defoliation Treatments. Journal of Applied Sciences Research, 2, 920-925.
[31]  Maposse, I.C. and Nhampalele, V.V. (2009) Performance of Cowpea Varieties under Different Defoliation Regimes for Multiple Uses. 9th African Crop Science, Conference Proceedings, Cape Town, South Africa, 28 September-2 October 2009, 279-281.
[32]  Heidari, H. (2015) Effect of Defoliation Based on Leaf Position on Maize Yield, Yield Components and Produced Seed Germination. Bulg. Bulgarian Journal of Agricultural Science, 21, 801-805.
[33]  Heidari, H., Bahraminejad, S., Maleki, G. and Papzan, A.H. (2009) Response of Cumin (Cuminum cyminum L.) to Sowing Date and Plant Density. Research Journal of Agriculture and Biological Sciences, 5, 597-602.
[34]  Fasae, O.A., Adu, F.I., Aina, A.B.J. and Elemo, K.A. (2009) Effects of Defoliation Time of Maize on Leaf Yield, Quality and Storage of Maize Leafs as Dry Season Forage for Ruminant Production. Revista Brasileira de Ciências Agrárias, 4, 353-357.
[35]  Egharevba, P.N., Horrocks, R.D. and Zuber, M.S. (1976) Dry Matter Accumulation in Maize in Response to Defoliation1. Agronomy Journal, 68, 40-43.
[36]  Thomison, P.R. and Nafziger, E.D. (2003) Defoliation Affects Grain Yield, Protein, and Oil of TopCross High-Oil Corn. Crop Management, 2, 1-9.
[37]  Tilahum, A. (1993) Quantitative and Physiological Traits in Maize (Zea mays). Associated with Different Levels of Moisture, Plant Density and Leaf Defoliation in Ethiopia. IARP, 74-80.
[38]  Zewdu, T. and Asregid, D. (2001) Effect of Growing Annual Forage Legumes with Maize and Maize Leaf Defoliation on Grain and Stover Yield Components and Undersown Forage Production. Seven Eastern and Southern Africa Regional Maize Conference, Southern Africa, August 2001, 487-490.
[39]  Erbas, S. and Baydar, H. (2007) Defoliation Effects on Sunflower (Helianthus annuus L.) Seed Yield and Oil Quality. Turkish Journal of Biology, 31, 115-118.
[40]  Allison, J.C.S. and Watson, D.J. (1966) The Production Distribution of Dry Matter in Maize after Flowering. Annals of Botany, 30, 365-381.
[41]  Siahkouhian, S., Shakiba, M.R., Salmasi, S.Z., Golezani, K.G. and Toorchi, M. (2012) Defoliation Effects on Yield Components and Grain Quality of Three Corn Cultivars. International Conference on Environment, Agriculture and Food Sciences, Phuket, 11-12 August 2012.
[42]  Shapiro, C.A., Peterson, T.A. and Flowerday, A.D. (1986) Yield Loss due to Simulated Hail Damage on Corn: A Comparison of Predicted and Actual Values. Agronomy Journal, 78, 585-589.
[43]  Barimavandi, A.R., Sedaghathoor, S. and Ansari, R. (2010) Effect of Different Defoliation Treatments on Yield and Yield Components in Maize (Zea mays L.) Cultivar of S.C704. Australian Journal of Crop Science, 4, 9-15.


comments powered by Disqus

Contact Us


微信:OALib Journal