All Title Author
Keywords Abstract

Publish in OALib Journal
ISSN: 2333-9721
APC: Only $99

ViewsDownloads

Natural Killer Cell-Based Immunotherapy against Solid Cancer

DOI: 10.4236/oalib.1107056, PP. 1-16

Subject Areas: Cell Biology

Keywords: Natural Killer Cell, Immunotherapy, Solid Cancer, Cytolytic Function

Full-Text   Cite this paper   Add to My Lib

Abstract

As a kind of important innate lymphocytes in vivo, Natural killer (NK) cells have a rapid and efficient capacity to recognize and destroy tumor cells, senescent cells and virus-infected cells. In the past decades, NK cells have been widely applied in the treatment of hematological malignancies in clinic, even solid tumors. Successful results have been made against hematological malignancies (NCT00697671, NCT00990717, NCT00145626), but also a number of considerable challenges have been encountered during this period, such as poor outcomes in the treatment of solid tumors, difficult to migrate to and infiltrate into tumor sites, little functioning NK cell was seen in tumor stroma. Now we know tumor microenvironment has great influence on NK cell function, phenotype and activation, and it can finally give rise to NK cell dysfunction or/and exhaustion. Many strategies have been made to try to overcome those drawbacks. In this review, we discuss the current strategies to increase the NK cell-mediated tumor cell killing capacity and homing to the solid tumor site with the aim of heightening the clinical outcome in NK cell-based immunotherapy against solid cancer.

Cite this paper

Lv, P. , Li, W. , Wang, R. , Huang, G. , Zhu, Y. and Tao, Q. (2021). Natural Killer Cell-Based Immunotherapy against Solid Cancer. Open Access Library Journal, 8, e7056. doi: http://dx.doi.org/10.4236/oalib.1107056.

References

[1]  Kiessling, R., Klein, E. and Wigzell, H. (1975) “Natural” Killer Cells in the Mouse. I. Cytotoxic Cells with Specificity for Mouse Moloney Leukemia Cells. Specificity and Distribution According to Genotype. European Journal of Immunology, 5, 112-117. https://doi.org/10.1002/eji.1830050208
[2]  Campbell, K.S. and Hasegawa, J. (2013) Natural Killer Cell Biology: An Update and Future Directions. The Journal of Allergy and Clinical Immunology, 132, 536-544. https://doi.org/10.1016/j.jaci.2013.07.006
[3]  Choucair, K., Duff, J.R., Cassidy, C.S., Albrethsen, M.T., Kelso, J.D., Lenhard, A., et al. (2019) Natural Killer Cells: A Review of Biology, Therapeutic Potential and Challenges in Treatment of Solid Tumors. Future Oncology, 15, 3053-3069. https://doi.org/10.2217/fon-2019-0116
[4]  Dogra, P., Rancan, C., Ma, W., Toth, M., Senda, T., Carpenter, D.J., et al. (2020) Tissue Determinants of Human NK Cell Development, Function, and Residence. Cell, 180, 749-763.e713. https://doi.org/10.1016/j.cell.2020.01.022
[5]  Hashemi, E. and Malarkannan, S. (2020) Tissue-Resident NK Cells: Development, Maturation, and Clinical Relevance. Cancers, 12, 1553. https://doi.org/10.3390/cancers12061553
[6]  Peng, H. and Tian, Z. (2017) Diversity of Tissue-Resident NK Cells. Seminars in Immunology, 31, 3-10. https://doi.org/10.1016/j.smim.2017.07.006
[7]  Dahlberg, C.I., Sarhan, D., Chrobok, M., Duru, A.D. and Alici, E. (2015) Natural Killer Cell-Based Therapies Targeting Cancer: Possible Strategies to Gain and Sustain Anti-Tumor Activity. Frontiers in Immunology, 6, 605. https://doi.org/10.3389/fimmu.2015.00605
[8]  Krizhanovsky, V., Yon, M., Dickins, R.A., Hearn, S., Simon, J., Miething, C., et al. (2008) Senescence of Activated Stellate Cells Limits Liver Fibrosis. Cell, 134, 657-667. https://doi.org/10.1016/j.cell.2008.06.049
[9]  Hueber, B., Curtis II, A.D., Kroll, K., Varner, V., Jones, R., Pathak, S., et al. (2020) Functional Perturbation of Mucosal Group 3 Innate Lymphoid and Natural Killer Cells in Simian-Human Immunodeficiency Virus/Simian Immunodeficiency Virus-Infected Infant Rhesus Macaques. Journal of Virology, 94, e01644-19. https://doi.org/10.1128/JVI.01644-19
[10]  Freud, A.G., Mundy-Bosse, B.L., Yu, J. and Caligiuri, M.A. (2017) The Broad Spectrum of Human Natural Killer Cell Diversity. Immunity, 47, 820-833. https://doi.org/10.1016/j.immuni.2017.10.008
[11]  Stabile, H., Fionda, C., Gismondi, A. and Santoni, A. (2017) Role of Distinct Natural Killer Cell Subsets in Anticancer Response. Frontiers in Immunology, 8, 293. https://doi.org/10.3389/fimmu.2017.00293
[12]  Chiossone, L., Chaix, J., Fuseri, N., Roth, C., Vivier, E. and Walzer, T. (2009) Maturation of Mouse NK Cells Is a 4-Stage Developmental Program. Blood, 113, 5488-5496. https://doi.org/10.1182/blood-2008-10-187179
[13]  Long, E.O., Kim, H.S., Liu, D., Peterson, M.E. and Rajagopalan, S. (2013) Controlling Natural Killer Cell Responses: Integration of Signals for Activation and Inhibition. Annual Review of Immunology, 31, 227-258. https://doi.org/10.1146/annurev-immunol-020711-075005
[14]  Abel, A.M., Yang, C., Thakar, M.S. and Malarkannan, S. (2018) Natural Killer Cells: Development, Maturation, and Clinical Utilization. Frontiers in Immunology, 9, 1869. https://doi.org/10.3389/fimmu.2018.01869
[15]  Khanna, R. (1998) Tumour Surveillance: Missing Peptides and MHC Molecules. Immunology and Cell Biology, 76, 20-26. https://doi.org/10.1046/j.1440-1711.1998.00717.x
[16]  Locatelli, F., Moretta, F., Brescia, L. and Merli, P. (2014) Natural Killer Cells in the Treatment of High-Risk Acute Leukaemia. Seminars in Immunology, 26, 173-179. https://doi.org/10.1016/j.smim.2014.02.004
[17]  Cerwenka, A., Baron, J.L. and Lanier, L.L. (2001) Ectopic Expression of Retinoic Acid Early Inducible-1 Gene (RAE-1) Permits Natural Killer Cell-Mediated Rejection of a MHC Class I-Bearing Tumor in Vivo. Proceedings of the National Academy of Sciences of the United States of America, 98, 11521-11526. https://doi.org/10.1073/pnas.201238598
[18]  Diefenbach, A., Jamieson, A.M., Liu, S.D., Shastri, N. and Raulet, D.H. (2000) Ligands for the Murine NKG2D Receptor: Expression by Tumor Cells and Activation of NK Cells and Macrophages. Nature Immunology, 1, 119-126. https://doi.org/10.1038/77793
[19]  Diefenbach, A., Jensen, E.R., Jamieson, A.M. and Raulet, D.H. (2001) Rae1 and H60 Ligands of the NKG2D Receptor Stimulate Tumour Immunity. Nature, 413, 165-171. https://doi.org/10.1038/35093109
[20]  Martinet, L. and Smyth, M.J. (2015) Balancing Natural Killer Cell Activation through Paired Receptors. Nature Reviews Immunology, 15, 243-254. https://doi.org/10.1038/nri3799
[21]  Takeda, K., Hayakawa, Y., Smyth, M.J., Kayagaki, N., Yamaguchi, N., Kakuta, S., et al. (2001) Involvement of Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand in Surveillance of Tumor Metastasis by Liver Natural Killer Cells. Nature Medicine, 7, 94-100. https://doi.org/10.1038/83416
[22]  Fauriat, C., Long, E.O., Ljunggren, H.G. and Bryceson, Y.T. (2010) Regulation of Human NK-Cell Cytokine and Chemokine Production by Target Cell Recognition. Blood, 115, 2167-2176. https://doi.org/10.1182/blood-2009-08-238469
[23]  Bryceson, Y.T., Ljunggren, H.G. and Long, E.O. (2009) Minimal Requirement for Induction of Natural Cytotoxicity and Intersection of Activation Signals by Inhibitory Receptors. Blood, 114, 2657-2666. https://doi.org/10.1182/blood-2009-01-201632
[24]  Vivier, E., Raulet, D.H., Moretta, A., Caligiuri, M.A., Zitvogel, L., Lanier, L.L., et al. (2011) Innate or Adaptive Immunity? The Example of Natural Killer Cells. Science, 331, 44-49. https://doi.org/10.1126/science.1198687
[25]  Moretta, A., Marcenaro, E., Parolini, S., Ferlazzo, G. and Moretta, L. (2008) NK Cells at the Interface between Innate and Adaptive Immunity. Cell Death and Differentiation, 15, 226-233. https://doi.org/10.1038/sj.cdd.4402170
[26]  Zheng, M., Sun, R., Wei, H. and Tian, Z.G. (2016) NK Cells Help Induce Anti-Hepatitis B Virus CD8 T Cell Immunity in Mice. Journal of Immunology, 196, 4122-4131. https://doi.org/10.4049/jimmunol.1500846
[27]  Jiang, S.L., Zhu, Y., Cheng, C., Li, Y., Ma, T., Peng, Z.W., et al. (2020) NK Cells Contribute to Hepatic CD8 T Cell Failure in Hepatitis B Virus-Carrier Mice after Alcohol Consumption. Virus Research, 286, Article ID: 198085. https://doi.org/10.1016/j.virusres.2020.198085
[28]  Boyiadzis, M., Agha, M., Redner, R.L., Sehgal, A., Im, A., Hou, J.-Z., et al. (2017) Phase 1 Clinical Trial of Adoptive Immunotherapy Using “Off-the-Shelf” Activated Natural Killer Cells in Patients with Refractory and Relapsed Acute Myeloid Leukemia. Cytotherapy, 19, 1225-1232. https://doi.org/10.1016/j.jcyt.2017.07.008
[29]  Kottaridis, P.D., North, J., Tsirogianni, M., Marden, C., Samuel, E.R., Jide-Banwo, S., et al. (2015) Two-Stage Priming of Allogeneic Natural Killer Cells for the Treatment of Patients with Acute Myeloid Leukemia: A Phase I Trial. PLoS ONE, 10, e0123416. https://doi.org/10.1371/journal.pone.0123416
[30]  Yang, Y., Lim, O., Kim, T.M., Ahn, Y.-O., Choi, H., Chung, H., et al. (2016) Phase I Study of Random Healthy Donor-Derived Allogeneic Natural Killer Cell Therapy in Patients with Malignant Lymphoma or Advanced Solid Tumors. Cancer Immunology Research, 4, 215-224. https://doi.org/10.1158/2326-6066.CIR-15-0118
[31]  Vela, M., Corral, D., Carrasco, P., Fernández, L., Valentín, J., González, B., et al. (2018) Haploidentical IL-15/41BBL Activated and Expanded Natural Killer Cell Infusion Therapy after Salvage Chemotherapy in Children with Relapsed and Refractory Leukemia. Cancer Letters, 422, 107-117. https://doi.org/10.1016/j.canlet.2018.02.033
[32]  Vitale, M., Cantoni, C., Pietra, G., Mingari, M.C. and Moretta, L. (2014) Effect of Tumor Cells and Tumor Microenvironment on NK-Cell Function. European Journal of Immunology, 44, 1582-1592. https://doi.org/10.1002/eji.201344272
[33]  Cremer, I., Fridman, W.H. and Sautès-Fridman, C. (2012) Tumor Microenvironment in NSCLC Suppresses NK Cells Function. OncoImmunology, 1, 244-246. https://doi.org/10.4161/onci.1.2.18309
[34]  Carrega, P., Morandi, B., Costa, R., Frumento, G., Forte, G., Altavilla, G., et al. (2008) Natural Killer Cells Infiltrating Human Nonsmall-Cell Lung Cancer Are Enriched in CD56BrightCD16- Cells and Display an Impaired Capability to Kill Tumor Cells. Cancer, 112, 863-875. https://doi.org/10.1002/cncr.23239
[35]  Delahaye, N.F., Rusakiewicz, S., Martins, I., Ménard, C., Roux, S., Lyonnet, L., et al. (2011) Alternatively Spliced NKp30 Isoforms Affect the Prognosis of Gastrointestinal Stromal Tumors. Nature Medicine, 17, 700-707. https://doi.org/10.1038/nm.2366
[36]  Chambers, A.M., Lupo, K.B. and Matosevic, S. (2018) Tumor Microenvironment-Induced Immunometabolic Reprogramming of Natural Killer Cells. Frontiers in Immunology, 9, 2517. https://doi.org/10.3389/fimmu.2018.02517
[37]  Zingoni, A., Vulpis, E., Nardone, I., Soriani, A., Fionda, C., Cippitelli, M., et al. (2016) Targeting NKG2D and NKp30 Ligands Shedding to Improve NK Cell-Based Immunotherapy. Critical Reviews in Immunology, 36, 445-460. https://doi.org/10.1615/CritRevImmunol.2017020166
[38]  Chitadze, G., Bhat, J., Lettau, M., Janssen, O. and Kabelitz, D. (2013) Generation of Soluble NKG2D Ligands: Proteolytic Cleavage, Exosome Secretion and Functional Implications. Scandinavian Journal of Immunology, 78, 120-129. https://doi.org/10.1111/sji.12072
[39]  Ferrari de Andrade, L., Tay, R.E., Pan, D., Luoma, A.M., Ito, Y., Badrinath, S., et al. (2018) Antibody-Mediated Inhibition of MICA and MICB Shedding Promotes NK Cell-Driven Tumor Immunity. Science, 359, 1537-1542. https://doi.org/10.1126/science.aao0505
[40]  Deng, W., Gowen, B.G., Zhang, L., Wang, L., Lau, S., Iannello, A., et al. (2015) Antitumor Immunity. A Shed NKG2D Ligand That Promotes Natural Killer Cell Activation and Tumor Rejection. Science, 348, 136-139. https://doi.org/10.1126/science.1258867
[41]  Hoechst, B., Voigtlaender, T., Ormandy, L., Gamrekelashvili, J., Zhao, F., Wedemeyer, H., et al. (2009) Myeloid Derived Suppressor Cells Inhibit Natural Killer Cells in Patients with Hepatocellular Carcinoma via the NKp30 Receptor. Hepatology, 50, 799-807. https://doi.org/10.1002/hep.23054
[42]  Li, T., Yang, Y., Hua, X., Wang, G., Liu, W., Jia, C., et al. (2012) Hepatocellular Carcinoma-Associated Fibroblasts Trigger NK Cell Dysfunction via PGE2 and IDO. Cancer Letters, 318, 154-161. https://doi.org/10.1016/j.canlet.2011.12.020
[43]  Balsamo, M., Vermi, W., Parodi, M., Pietra, G., Manzini, C., Queirolo, P., et al. (2012) Melanoma Cells Become Resistant to NK-Cell-Mediated Killing When Exposed to NK-Cell Numbers Compatible with NK-Cell Infiltration in the Tumor. European Journal of Immunology, 42, 1833-1842. https://doi.org/10.1002/eji.201142179
[44]  Li, T., Yi, S., Liu, W., Jia, C., Wang, G., Hua, X., et al. (2013) Colorectal Carcinoma-Derived Fibroblasts Modulate Natural Killer Cell Phenotype and Antitumor Cytotoxicity. Medical Oncology, 30, Article No. 663. https://doi.org/10.1007/s12032-013-0663-z
[45]  Nayyar, G., Chu, Y. and Cairo, M.S. (2019) Overcoming Resistance to Natural Killer Cell Based Immunotherapies for Solid Tumors. Frontiers in Oncology, 9, 51. https://doi.org/10.3389/fonc.2019.00051
[46]  Habif, G., Crinier, A., André, P., Vivier, E. and Narni-Mancinelli, E. (2019) Targeting Natural Killer Cells in Solid Tumors. Cellular & Molecular Immunology, 16, 415-422. https://doi.org/10.1038/s41423-019-0224-2
[47]  Stojanovic, A. and Cerwenka, A. (2011) Natural Killer Cells and Solid Tumors. Journal of Innate Immunity, 3, 355-364. https://doi.org/10.1159/000325465
[48]  Carlsten. M., Norell. H., Bryceson. Y.T., Poschke, I., Schedvins, K., Ljunggren, H.-G., et al. (2009) Primary Human Tumor Cells Expressing CD155 Impair Tumor Targeting by Down-Regulating DNAM-1 on NK Cells. Journal of Immunology, 183, 4921-4930. https://doi.org/10.4049/jimmunol.0901226
[49]  Bi, J. and Tian, Z. (2017) NK Cell Exhaustion. Frontiers in Immunology, 8, 760. https://doi.org/10.3389/fimmu.2017.00760
[50]  Ghiringhelli, F., Ménard, C., Terme, M., Flament, C., Taieb, J., Chaput, N., et al. (2005) CD4 CD25 Regulatory T Cells Inhibit Natural Killer Cell Functions in a Transforming Growth Factor-Beta-Dependent Manner. The Journal of Experimental Medicine, 202, 1075-1085. https://doi.org/10.1084/jem.20051511
[51]  Castriconi, R., Cantoni, C., Della Chiesa, M., Vitale, M., Marcenaro, E., Conte, R., et al. (2003) Transforming Growth Factor Beta 1 Inhibits Expression of NKp30 and NKG2D Receptors: Consequences for the NK-Mediated Killing of Dendritic Cells. Proceedings of the National Academy of Sciences of the United States of America, 100, 4120-4125. https://doi.org/10.1073/pnas.0730640100
[52]  Marcenaro, E., Della Chiesa, M., Bellora, F., Parolini, S., Millo, R., Moretta, L., et al. (2005) IL-12 or IL-4 Prime Human NK Cells to Mediate Functionally Divergent Interactions with Dendritic Cells or Tumors. Journal of Immunology, 174, 3992-3998. https://doi.org/10.4049/jimmunol.174.7.3992
[53]  Pietra, G., Manzini, C., Rivara, S., Vitale, M., Cantoni, C., Petretto, A., et al. (2012) Melanoma Cells Inhibit Natural Killer Cell Function by Modulating the Expression of Activating Receptors and Cytolytic Activity. Cancer Research, 72, 1407-1415. https://doi.org/10.1158/0008-5472.CAN-11-2544
[54]  Batlle, E. and Massagué, J. (2019) Transforming Growth Factor-β Signaling in Immunity and Cancer. Immunity, 50, 924-940. https://doi.org/10.1016/j.immuni.2019.03.024
[55]  Feng, Y., Xiong, Y., Qiao, T., Li, X., Jia, L., Han, Y., et al. (2018) Lactate Dehydrogenase A: A Key Player in Carcinogenesis and Potential Target in Cancer Therapy. Cancer Medicine, 7, 6124-6136. https://doi.org/10.1002/cam4.1820
[56]  Augsten, M. (2014) Cancer-Associated Fibroblasts as Another Polarized Cell Type of the Tumor Microenvironment. Frontiers in Oncology, 4, 62. https://doi.org/10.3389/fonc.2014.00062
[57]  Lee, J.C., Lee, K.M., Kim, D.W. and Heo, D.S. (2004) Elevated TGF-Betal Secretion and Down-Modulation of NKG2D Underlies Impaired NK Cytotoxicity in Cancer Patients. Journal of Immunology, 172, 7335-7340. https://doi.org/10.4049/jimmunol.172.12.7335
[58]  Zhang, R., Qi, F., Zhao, F., Li, G., Shao, S.L., Zhang, X.C., et al. (2019) Cancer-Associated Fibroblasts Enhance Tumor-Associated Macrophages Enrichment and Suppress NK Cells Function in Colorectal Cancer. Cell Death & Disease, 10, Article No. 273. https://doi.org/10.1038/s41419-019-1435-2
[59]  Viel, S., Marçais, A., Guimaraes, F.S., Loftus, R., Rabilloud, J., Grau, M., et al. (2016) TGF-β Inhibits the Activation and Functions of NK Cells by Repressing the mTOR Pathway. Science Signaling, 9, ra19. https://doi.org/10.1126/scisignal.aad1884
[60]  Zaiatz-Bittencourt. V., Finlay. D.K. and Gardiner. C.M. (2018) Canonical TGF-β Signaling Pathway Represses Human NK Cell Metabolism. Journal of Immunology, 200, 3934-3941. https://doi.org/10.4049/jimmunol.1701461
[61]  Slattery, K., Zaiatz-Bittencourt, V., Woods, E., Brennan, K., Marks, S., Chew, S., et al. (2019) TGFβ Drives Mitochondrial Dysfunction in Peripheral Blood NK Cells during Metastatic Breast Cancer. bioRxiv, Article ID: 648501. https://doi.org/10.1101/648501
[62]  Cortez, V.S., Ulland, T.K., Cervantes-Barragan, L., Bando, J.K., Robinette, M.L., Wang, Q.L., et al. (2017) SMAD4 Impedes the Conversion of NK Cells into ILC1-Like Cells by Curtailing Non-Canonical TGF-β Signaling. Nature Immunology, 18, 995-1003. https://doi.org/10.1038/ni.3809
[63]  Gao, Y., Souza-Fonseca-Guimaraes, F., Bald, T., Ng, S.S., Young, A., Ngiow, S.F., et al. (2017) Tumor Immunoevasion by the Conversion of Effector NK Cells Into Type 1 Innate Lymphoid Cells. Nature Immunology, 18, 1004-1015. https://doi.org/10.1038/ni.3800
[64]  Gubbels, J.A., Felder, M., Horibata, S., Belisle, J.A., Kapur, A., Holden, H., et al. (2010) MUC16 Provides Immune Protection by Inhibiting Synapse Formation between NK and Ovarian Tumor Cells. Molecular Cancer, 9, Article No. 11. https://doi.org/10.1186/1476-4598-9-11
[65]  Mehta, R.S., Randolph, B., Daher, M. and Rezvani, K. (2018) NK Cell Therapy for Hematologic Malignancies. International Journal of Hematology, 107, 262-270. https://doi.org/10.1007/s12185-018-2407-5
[66]  Mehta, R.S. and Rezvani, K. (2016) Immune Reconstitution Post Allogeneic Transplant and the Impact of Immune Recovery on the Risk of Infection. Virulence, 7, 901-916. https://doi.org/10.1080/21505594.2016.1208866
[67]  Sakamoto, N., Ishikawa, T., Kokura, S., Okayama, T., Oka, K., Ideno, M., et al. (2015) Phase I Clinical Trial of Autologous NK Cell Therapy Using Novel Expansion Method in Patients with Advanced Digestive Cancer. Journal of Translational Medicine, 13, Article No. 277. https://doi.org/10.1186/s12967-015-0632-8
[68]  Parkhurst, M.R., Riley, J.P., Dudley, M.E. and Rosenberg, S.A. (2011) Adoptive Transfer of Autologous Natural Killer Cells Leads to High Levels of Circulating Natural Killer Cells but Does Not Mediate Tumor Regression. Clinical Cancer Research, 17, 6287-6297. https://doi.org/10.1158/1078-0432.CCR-11-1347
[69]  Geller, M.A., Cooley, S., Judson, P.L., Ghebre, R., Carson, L.F., Argenta, P.A., et al. (2011) A Phase II Study of Allogeneic Natural Killer Cell Therapy to Treat Patients with Recurrent Ovarian and Breast Cancer. Cytotherapy, 13, 98-107. https://doi.org/10.3109/14653249.2010.515582
[70]  Pérez-Martínez, A., Fernández, L., Valentín, J., Martínez-Romera, I., Corral, M.D., Ramírez, M., et al. (2015) A Phase I/II Trial of Interleukin-15—Stimulated Natural Killer Cell Infusion after Haplo-Identical Stem Cell Transplantation for Pediatric Refractory Solid Tumors. Cytotherapy, 17, 1594-1603. https://doi.org/10.1016/j.jcyt.2015.07.011
[71]  Iliopoulou, E.G., Kountourakis, P., Karamouzis, M.V., Doufexis, D., Ardavanis, A., Baxevanis, C.N., et al. (2010) A Phase I Trial of Adoptive Transfer of Allogeneic Natural Killer Cells in Patients with Advanced Non-Small Cell Lung Cancer. Cancer Immunology, Immunotherapy, 59, 1781-1789. https://doi.org/10.1007/s00262-010-0904-3
[72]  Tonn, T., Schwabe, D., Klingemann, H.G., Becker, S., Esser, R., Koehl, U., et al. (2013) Treatment of Patients with Advanced Cancer with the Natural Killer Cell Line NK-92. Cytotherapy, 15, 1563-1570. https://doi.org/10.1016/j.jcyt.2013.06.017
[73]  Suck, G., Odendahl, M., Nowakowska, P., Seidl, C., Wels, W.S., Klingemann, H.G., et al. (2016) NK-92: An ‘Off-the-Shelf Therapeutic’ for Adoptive Natural Killer Cell-Based Cancer Immunotherapy. Cancer Immunology, Immunotherapy, 65, 485-492. https://doi.org/10.1007/s00262-015-1761-x
[74]  Zhu, H., Blum, R.H., Bernareggi, D., Heggernes Ask, E., Wu, Z., Hoel, H.J., et al. (2020) Metabolic Reprograming via Deletion of CISH in Human iPSC-Derived NK Cells Promotes in Vivo Persistence and Enhances Anti-Tumor Activity. Cell Stem Cell, 27, 224-237.e226. https://doi.org/10.1016/j.stem.2020.05.008
[75]  Knorr, D.A., Ni, Z., Hermanson, D., Hexum, M.K., Bendzick, L., Cooper, L.J., et al. (2013) Clinical-Scale Derivation of Natural Killer Cells from Human Pluripotent Stem Cells for Cancer Therapy. Stem Cells Translational Medicine, 2, 274-283. https://doi.org/10.5966/sctm.2012-0084
[76]  Woll, P.S., Grzywacz, B., Tian, X., Marcus, R.K., Knorr, D.A., Verneris, M.R., et al. (2009) Human Embryonic Stem Cells Differentiate into a Homogeneous Population of Natural Killer Cells with Potent in Vivo Antitumor Activity. Blood, 113, 6094-6101. https://doi.org/10.1182/blood-2008-06-165225
[77]  Woll, P.S., Martin, C.H., Miller, J.S. and Kaufman, D.S. (2005) Human Embryonic Stem Cell-Derived NK Cells Acquire Functional Receptors and Cytolytic Activity. Journal of Immunology, 175, 5095-5103. https://doi.org/10.4049/jimmunol.175.8.5095
[78]  Han, J., Chu, J., Keung Chan, W., Zhang, J.Y., Wang, Y.W., Cohen, J.B., et al. (2015) CAR-Engineered NK Cells Targeting Wild-Type EGFR and EGFRvIII Enhance Killing of Glioblastoma and Patient-Derived Glioblastoma Stem Cells. Scientific Reports, 5, Article No. 11483. https://doi.org/10.1038/srep11483
[79]  Müller, N., Michen, S., Tietze, S., Töpfer, K., Schulte, A., Lamszus, K., et al. (2015) Engineering NK Cells Modified with an EGFRvIII-Specific Chimeric Antigen Receptor to Overexpress CXCR4 Improves Immunotherapy of CXCL12/SDF-1α-Secreting Glioblastoma. Journal of Immunotherapy, 38, 197-210. https://doi.org/10.1097/CJI.0000000000000082
[80]  Kruschinski, A., Moosmann, A., Poschke, I., Norell, H., Chmielewski, M., Seliger, B., et al. (2008) Engineering Antigen-Specific Primary Human NK Cells against HER-2 Positive Carcinomas. Proceedings of the National Academy of Sciences of the United States of America, 105, 17481-17486. https://doi.org/10.1073/pnas.0804788105
[81]  Montagner, I.M., Penna, A., Fracasso, G., Carpanese, D., Pietà, A.D., Barbieri, V., et al. (2020) Anti-PSMA CAR-Engineered NK-92 Cells: An Off-the-Shelf Cell Therapy for Prostate Cancer. Cells, 9, 1382. https://doi.org/10.20944/preprints202005.0259.v1
[82]  Xia, N., Pang, H.P., Gong, J., Lu, J., Chen, Z.J., Zheng, Y.F., et al. (2019) Robo1-Specific CAR-NK Immunotherapy Enhances Efficacy of 125I Seed Brachytherapy in an Orthotopic Mouse Model of Human Pancreatic Carcinoma. Anticancer Research, 39, 5919-5925. https://doi.org/10.21873/anticanres.13796
[83]  Blidner, A.G., Mariño, K.V. and Rabinovich, G.A. (2016) Driving CARs into Sweet Roads: Targeting Glycosylated Antigens in Cancer. Immunity, 44, 1248-1250. https://doi.org/10.1016/j.immuni.2016.06.010
[84]  Posey Jr., A.D., Schwab, R.D., Boesteanu, A.C., Steentoft, C., Mandel, U., Engels, B., et al. (2016) Engineered CAR T Cells Targeting the Cancer-Associated Tn-Glycoform of the Membrane Mucin MUC1 Control Adenocarcinoma. Immunity, 44, 1444-1454. https://doi.org/10.1016/j.immuni.2016.05.014
[85]  Chu, J., Deng, Y., Benson, D.M., He, S., Hughes, T., Zhang, J., et al. (2014) CS1-Specific Chimeric Antigen Receptor (CAR)-Engineered Natural Killer Cells Enhance in Vitro and in Vivo Antitumor Activity against Human Multiple Myeloma. Leukemia, 28, 917-927. https://doi.org/10.1038/leu.2013.279
[86]  Li, Y., Hermanson, D.L., Moriarity, B.S. and Kaufman, D.S. (2018) Human iPSC-Derived Natural Killer Cells Engineered with Chimeric Antigen Receptors Enhance Anti-Tumor Activity. Cell Stem Cell, 23, 181-192.e185. https://doi.org/10.1016/j.stem.2018.06.002
[87]  Souza-Fonseca-Guimaraes, F., Cursons, J. and Huntington, N.D. (2019) The Emergence of Natural Killer Cells as a Major Target in Cancer Immunotherapy. Trends in Immunology, 40, 142-158. https://doi.org/10.1016/j.it.2018.12.003
[88]  Park, J., Wrzesinski, S.H., Stern, E., Look, M., Criscione, J., Ragheb, R., et al. (2012) Combination delivery of TGF-β Inhibitor and IL-2 by Nanoscale Liposomal Polymeric Gels Enhances Tumour Immunotherapy. Nature Materials, 11, 895-905. https://doi.org/10.1038/nmat3355
[89]  Otegbeye, F., Ojo, E., Moreton, S., Mackowski, N., Lee, D.A., de Lima, M., et al. (2018) Inhibiting TGF-Beta Signaling Preserves the Function of Highly Activated, in Vitro Expanded Natural Killer Cells in AML and Colon Cancer Models. PLoS ONE, 13, e0191358. https://doi.org/10.1371/journal.pone.0191358
[90]  Young, A., Ngiow, S.F., Gao, Y., Patch, A.-M., Barkauskas, D.S., Messaoudene, M., et al. (2018) A2AR Adenosine Signaling Suppresses Natural Killer Cell Maturation in the Tumor Microenvironment. Cancer Research, 78, 1003-1016. https://doi.org/10.1158/0008-5472.CAN-17-2826
[91]  Tchou, J., Zhao, Y., Levine, B.L., Zhang, P.J., Davis, M.M., Joseph Melenhorst, J., et al. (2017) Safety and Efficacy of Intratumoral Injections of Chimeric Antigen Receptor (CAR) T Cells in Metastatic Breast Cancer. Cancer Immunology Research, 5, 1152-1161. https://doi.org/10.1158/2326-6066.CIR-17-0189
[92]  Priceman, S.J., Tilakawardane, D., Jeang, B., Aguilar, B., Murad, J.P., Park, A.K., et al. (2018) Regional Delivery of Chimeric Antigen Receptor-Engineered T Cells Effectively Targets HER2 Breast Cancer Metastasis to the Brain. Clinical Cancer Research, 24, 95-105. https://doi.org/10.1158/1078-0432.CCR-17-2041
[93]  Nellan, A., Rota, C., Majzner, R., Lester-McCully, C.M., Griesinger, A.M., Mulcahy Levy, J.M., et al. (2018) Durable Regression of Medulloblastoma after Regional and Intravenous Delivery of Anti-HER2 Chimeric Antigen Receptor T Cells. Journal for Immunotherapy of Cancer, 6, 30. http://dx.doi.org/10.1186/s40425-018-0340-z
[94]  Katz, S.C., Point, G.R., Cunetta, M., Thorn, M., Guha, P., Espat, N.J., et al. (2016) Regional CAR-T Cell Infusions for Peritoneal Carcinomatosis Are Superior to Systemic Delivery. Cancer Gene Therapy, 23, 142-148. https://doi.org/10.1038/cgt.2016.14
[95]  Vivier, E., Tomasello, E., Baratin, M., Walzer, T. and Ugolini, S. (2008) Functions of Natural Killer Cells. Nature Immunology, 9, 503-510. https://doi.org/10.1038/ni1582
[96]  Bachanova, V., Cooley, S., Defor, T.E., Verneris, M.R., Zhang, B., McKenna, D.H., et al. (2014) Clearance of Acute Myeloid Leukemia by Haploidentical Natural Killer Cells Is Improved Using IL-2 Diphtheria Toxin Fusion Protein. Blood, 123, 3855-3863. https://doi.org/10.1182/blood-2013-10-532531
[97]  Adotevi, O., Godet, Y., Galaine, J., Lakkis, Z., Idirene, I., Certoux, J.M., et al. (2018) In Situ Delivery of Allogeneic Natural Killer Cell (NK) Combined with Cetuximab in Liver Metastases of Gastrointestinal Carcinoma: A Phase I Clinical Trial. OncoImmunology, 7, Article ID: e1424673. https://doi.org/10.1080/2162402X.2018.1424673
[98]  Chinen, T., Kannan, A.K., Levine, A.G., Fan, X.Y., Klein, U., Zheng, Y., et al. (2016) An Essential Role for the IL-2 Receptor in Treg Cell Function. Nature Immunology, 17, 1322-1333. https://doi.org/10.1038/ni.3540
[99]  Huntington, N.D., Puthalakath, H., Gunn, P., Naik, E., Michalak, E.M., Smyth, M.J., et al. (2007) Interleukin 15-Mediated Survival of Natural Killer Cells Is Determined by Interactions among Bim, Noxa and Mcl-1. Nature Immunology, 8, 856-863. https://doi.org/10.1038/ni1487
[100]  Mortier, E., Woo, T., Advincula, R., Gozalo, S. and Ma, A. (2008) IL-15Ralpha Chaperones IL-15 to Stable Dendritic Cell Membrane Complexes That Activate NK Cells via Trans Presentation. The Journal of Experimental Medicine, 205, 1213-1225. https://doi.org/10.1084/jem.20071913
[101]  Hennessy, R.J., Pham, K., Delconte, R., Rautela, J., Hodgkin, P.D. and Huntington, N.D. (2019) Quantifying NK Cell Growth and Survival Changes in Response to Cytokines and Regulatory Checkpoint Blockade Helps Identify Optimal Culture and Expansion Conditions. Journal of Leukocyte Biology, 105, 1341-1354. https://doi.org/10.1002/JLB.MA0718-296R
[102]  Strengell, M., Matikainen, S., Sirén, J., Lehtonen, A., Foster, D., Julkunen, I., et al. (2003) IL-21 in Synergy with IL-15 or IL-18 Enhances IFN-Gamma Production in Human NK and T Cells. Journal of Immunology, 170, 5464-5469. https://doi.org/10.4049/jimmunol.170.11.5464
[103]  Lusty, E., Poznanski, S.M., Kwofie, K., Mandur, T.S., Lee, D.A., Richards, C.D., et al. (2017) IL-18/IL-15/IL-12 Synergy Induces Elevated and Prolonged IFN-γ Production by ex Vivo Expanded NK Cells Which Is Not Due to Enhanced STAT4 Activation. Molecular Immunology, 88, 138-147. https://doi.org/10.1016/j.molimm.2017.06.025
[104]  Assmann, N., O’Brien, K.L., Donnelly, R.P., Dyck, L., Zaiatz-Bittencourt, V., Loftus, R.M., et al. (2017) Srebp-Controlled Glucose Metabolism Is Essential for NK Cell Functional responses. Nature Immunology, 18, 1197-1206. https://doi.org/10.1038/ni.3838
[105]  Sukumar, M., Liu, J., Ji, Y., Subramanian, M., Crompton, J.G., Yu, Z.Y., et al. (2013) Inhibiting Glycolytic Metabolism Enhances CD8 T Cell Memory and Antitumor Function. The Journal of Clinical Investigation, 123, 4479-4488. https://doi.org/10.1172/JCI69589
[106]  Crompton, J.G., Sukumar, M., Roychoudhuri, R., Clever, D., Gros, A., Eil, R.L., et al. (2015) Akt Inhibition Enhances Expansion of Potent Tumor-Specific Lymphocytes with Memory Cell Characteristics. Cancer Research, 75, 296-305. https://doi.org/10.1158/0008-5472.CAN-14-2277
[107]  Naeimi Kararoudi, M., Dolatshad, H., Trikha, P., Hussain, S.-R.A., Elmas, E., Foltz, J.A., et al. (2018) Generation of Knock-Out Primary and Expanded Human NK Cells Using Cas9 Ribonucleoproteins. Journal of Visualized Experiments, No. 136, 58237. https://doi.org/10.3791/58237
[108]  Wang, Q.M., Tang, P.M., Lian, G.Y., Li, C.J., Li, J.H., Huang, X.-R., et al. (2018) Enhanced Cancer Immunotherapy with Smad3-Silenced NK-92 Cells. Cancer Immunology Research, 6, 965-977. https://doi.org/10.1158/2326-6066.CIR-17-0491
[109]  Esser, R., Müller, T., Stefes, D., Kloess, S., Seidel, D., Gillies, S.D., et al. (2012) NK Cells Engineered to Express a GD2 -Specific Antigen Receptor Display Built-in ADCC-Like Activity against Tumour Cells of Neuroectodermal Origin. Journal of Cellular and Molecular Medicine, 16, 569-581. https://doi.org/10.1111/j.1582-4934.2011.01343.x
[110]  Sahm, C., Schönfeld, K. and Wels, W.S. (2012) Expression of IL-15 in NK Cells Results in Rapid Enrichment and Selective Cytotoxicity of Gene-Modified Effectors That Carry a Tumor-Specific Antigen Receptor. Cancer Immunology, Immunotherapy, 61, 1451-1461. https://doi.org/10.1007/s00262-012-1212-x
[111]  Zhang, C., Burger, M.C., Jennewein, L., Genßler, S., Schönfeld, K., Zeiner, P., et al. (2016) ErbB2/HER2-Specific NK Cells for Targeted Therapy of Glioblastoma. Journal of the National Cancer Institute, 108, djv375. https://doi.org/10.1093/jnci/djv375
[112]  Arai, S., Meagher, R., Swearingen, M., Myint, H., Rich, E., Martinson, J., et al. (2008) Infusion of the Allogeneic Cell Line NK-92 in Patients with Advanced Renal Cell Cancer or Melanoma: A Phase I Trial. Cytotherapy, 10, 625-632. https://doi.org/10.1080/14653240802301872
[113]  Yuan, X., Wu, H., Bu, H., Zhou, J. and Zhang, H. (2019) Targeting the Immunity Protein Kinases for Immuno-Oncology. European Journal of Medicinal Chemistry, 163, 413-427. https://doi.org/10.1016/j.ejmech.2018.11.072
[114]  Yingling, J.M., McMillen, W.T., Yan, L., Huang, H., Scott Sawyer, J., Graff, J., et al. (2018) Preclinical Assessment of Galunisertib (LY2157299 Monohydrate), a First-in-Class Transforming Growth Factor-β Receptor Type I Inhibitor. Oncotarget, 9, 6659-6677. https://doi.org/10.18632/oncotarget.23795
[115]  Spolski, R., Li, P. and Leonard, W.J. (2018) Biology and Regulation of IL-2: From Molecular Mechanisms to human Therapy. Nature Reviews Immunology, 18, 648-659. https://doi.org/10.1038/s41577-018-0046-y

Full-Text


comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679