全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

Desalination Engineering: Environmental Impacts of the Brine Disposal and Their Control

DOI: 10.4236/oalib.1106777, PP. 1-17

Subject Areas: Chemical Engineering & Technology

Keywords: Brine Disposal, Desalination, Seawater, Brackish Water, Mitigation and Control Strategies (M&CSs), Environmental Impacts (EIs)

Full-Text   Cite this paper   Add to My Lib

Abstract

Freshwater supplies remain more and more in lack corresponding to the increased demand for several human activities. Such difficult circumstances make desalination of saline water an obligation. Desalination to take out water from saline water has been proved as a safe non-traditional water supply. Nevertheless, like any human-founded method, desalination has conducted to several influences on nature. Charged with chemical products, brine is discharged back to nature. Greenhouse gases (GHGs) emissions are liberated to the atmosphere. Brine and GHGs are the most important effects that have been broadly investigated with some attempts accorded to their mitigation and control strategies (M&CSs). This review examines the M&CSs related to the several environmental impacts (EIs) of desalination engineering and focuses on brine disposal. Numerous EIs could be avoided, or at least reduced, by integrating specific design standards and ameliorating applied technologies. The feedwater source possesses a considerable influence on EIs. At the identical degree, desalination engineering possesses an important impact on the EIs linked to brine features and energy consumption. Fresh desalination techniques have depicted decreased EIs relative to traditional thermal and membrane desalination methods. Further, employing renewable and waste energy sources has illustrated a considerable decrease in EIs related to energy consumption.

Cite this paper

Ghernaout, D. (2020). Desalination Engineering: Environmental Impacts of the Brine Disposal and Their Control. Open Access Library Journal, 7, e6777. doi: http://dx.doi.org/10.4236/oalib.1106777.

References

[1]  Elsaid, K., Sayed, E.T., Abdelkareem, M.A., Baroutaji, A., and Olabi, A.G. (2020) Environmental Impact of Desalination Processes: Mitigation and Control Strategies. Science of the Total Environment, 740, Article ID: 140125. https://doi.org/10.1016/j.scitotenv.2020.140125
[2]  Ghernaout, D. (2017) Environmental Principles in the Holy Koran and the Sayings of the Prophet Muhammad. American Journal of Environmental Protection, 6, 75-79. https://doi.org/10.11648/j.ajep.20170603.13
[3]  Ghernaout, D. (2013) The Best Available Technology of Water/Wastewater Treatment and Seawater Desalination: Simulation of the Open Sky Seawater Distillation. Green and Sustainable Chemistry, 3, 68-88. https://doi.org/10.4236/gsc.2013.32012
[4]  Fritzmann, C., L?wenberg, J., Wintgens, T. and Melin, T. (2007) State-of-the-Art of Reverse Osmosis Desalination. Desalination, 216, 1-76. https://doi.org/10.1016/j.desal.2006.12.009
[5]  Jones, E., Qadir, M., van Vliet, M.T.H., Smakhtin, V. and Kang, S. (2019) The State of Desalination and Brine Production: A Global Outlook. Science of The Total Environment, 657, 1343-1356. https://doi.org/10.1016/j.scitotenv.2018.12.076
[6]  Irki, S., Kasbadji-Merzouk, N., Hanini, S. and Ghernaout, D.(2020) Modelling of the Coupling of Desalination Plants with the Thermal Solar Energy System. Water Supply, 20, 1807-1822. https://doi.org/10.2166/ws.2020.092
[7]  Singh, Y.B. and Ng, K.C. (2019) Elucidation of Dual-Mode Inhibition Mechanism of a Typical Polymer-Based Antiscalant on Red Seawater for Thermal Desalination at Higher Temperatures and Higher Concentration Factors. Journal of Petroleum Science and Engineering, 183, Article ID: 106380. https://doi.org/10.1016/j.petrol.2019.106380
[8]  Ghernaout, D. and El-Wakil, A. (2017) Requiring Reverse Osmosis Membranes Modifications—An Overview. American Journal of Chemical Engineering, 5, 81-88. https://doi.org/10.11648/j.ajche.20170504.15
[9]  Ghernaout, D. (2017) Reverse Osmosis Process Membranes Modeling—A Historical Overview. Journal of Civil, Construction and Environmental Engineering, 2, 112-122.
[10]  Ghernaout, D., Alshammari, Y., Alghamdi, A., Aichouni, M., Touahmia, M. and Ait, Messaoudene, N. (2018) Water Reuse: Extenuating Membrane Fouling in Membrane Processes. American Journal of Chemical Engineering, 6, 25-36. https://doi.org/10.11648/j.ajche.20180602.12
[11]  Malaeb, L. and Ayoub, G.M. (2011) Reverse Osmosis Technology for Water Treatment: State of the Art Review. Desalination, 267, 1-8. https://doi.org/10.1016/j.desal.2010.09.001
[12]  Son, H.S., Shahzad, M.W., Ghaffour, N. and Ng, K.C. (2020) Pilot Studies on Synergetic Impacts of Energy Utilization in Hybrid Desalination System: Multi-Effect Distillation and Adsorption Cycle (MED-AD). Desalination, 477, Article ID: 114266. https://doi.org/10.1016/j.desal.2019.114266
[13]  Ghernaout, D. (2019) Brine Recycling: Towards Membrane Processes as the Best Available Technology. Applied Engineering, 3, 71-84.
[14]  Park, K., Kim, J., Yang, D.R and Hong, S. (2020) Towards a Low-Energy Seawater Reverse Osmosis Desalination Plant: A Review and Theoretical Analysis for Future Directions. Journal of Membrane Science, 595, Article ID: 117607. https://doi.org/10.1016/j.memsci.2019.117607
[15]  Swaminathan, J., Tow, E.W., Stover, R.L. and Lienhard, J.H. (2019) Practical Aspects of Batch RO Design for Energy-Efficient Seawater Desalination. Desalination, 470, Article ID: 114097. https://doi.org/10.1016/j.desal.2019.114097
[16]  Yusuf, A., Sodiq, A., Giwa, A., Eke, J., Pikuda, O., De Luca, G., Di Salvo, J.L. and Chakraborty, S. (2020) A Review of Emerging Trends in Membrane Science and Technology for Sustainable Water Treatment. Journal of Cleaner Production, 266, Article ID: 121867. https://doi.org/10.1016/j.jclepro.2020.121867
[17]  Roy, K., Mukherjee, A., Maddela, N.R, Chakraborty, S., Shen, B., Li, M., Du, D., Peng, Y., Lu, F. and Garciá Cruzatty, L.C. (2020) Outlook on the Bottleneck of Carbon Nanotube in Desalination and Membrane-Based Water Treatment—A Review. Journal of Environmental Chemical Engineering, 8, Article ID: 103572. https://doi.org/10.1016/j.jece.2019.103572
[18]  Elimelech, M. and Phillip, W.A. (2011) The Future of Seawater Desalination: Energy, Technology, and the Environment. Science, 333, 712-717. https://doi.org/10.1126/science.1200488
[19]  Kress, N. and Galil, B. (2018) Impact of Seawater Desalination by Reverse Osmosis on the Marine Environment. In: Kress, N. and Galil, B., Eds., Efficient Desalination by Reverse Osmosis, IWA Publishing, London.
[20]  Lu, K.J., Cheng, Z.L., Chang, J., Luo, L. and Chung, T.S. (2019) Design of Zero Liquid Discharge Desalination (ZLDD) Systems Consisting of Freeze Desalination, Membrane Distillation, and Crystallization Powered by Green Energies. Desalination, 458, 66-75. https://doi.org/10.1016/j.desal.2019.02.001
[21]  Mezher, T., Fath, H., Abbas, Z. and Khaled, A. (2011) Techno-Economic Assessment and Environmental Impacts of Desalination Technologies. Desalination, 266, 263-273. https://doi.org/10.1016/j.desal.2010.08.035
[22]  Hoepner, T. (1999) A Procedure for Environmental Impact Assessments (EIA) for Seawater Desalination Plants. Desalination, 124, 1-12. https://doi.org/10.1016/S0011-9164(99)00083-1
[23]  Kress, N. (2019) Marine Environmental Impact of Seawater Desalination: Science, Management, and Policy. Elsevier Inc., Amsterdam.
[24]  Alshahri, A.H., Fortunato, L., Ghaffour, N. and Leiknes, T.O (2019)Advanced Coagulation Using in-situ Generated Liquid Ferrate, Fe (VI), for Enhanced Pretreatment in Seawater RO Desalination during Algal Blooms. Science of the Total Environment, 685, 1193-1200. https://doi.org/10.1016/j.scitotenv.2019.06.286
[25]  Giwa, A., Dufour, V., Al Marzooqi, F., Al Kaabi, M. and Hasan, S.W. (2017) Brine Management Methods: Recent Innovations and Current Status. Desalination, 407, 1-23. https://doi.org/10.1016/j.desal.2016.12.008
[26]  Hashim, A. and Hajjaj, M. (2005) Impact of Desalination Plants Fluid Effluents on the Integrity of Seawater, with the Arabian Gulf in Perspective. Desalination, 182, 373-393. https://doi.org/10.1016/j.desal.2005.04.020
[27]  Mavukkandy, M.O., Chabib, C.M., Mustafa, I., Al Ghaferi, A. and AlMarzooqi, F. (2019) Brine Management in Desalination Industry: From Waste to Resources Generation. Desalination, 472, Article ID: 114187. https://doi.org/10.1016/j.desal.2019.114187
[28]  Ameen, F., Stagner, J.A. and Ting, D.S.K. (2018) The Carbon Footprint and Environmental Impact Assessment of Desalination. International Journal of Environmental Studies, 75, 45-58. https://doi.org/10.1080/00207233.2017.1389567
[29]  Abdelkareem, M.A., El Haj Assad, M., Sayed, E.T. and Soudan, B. (2018) Recent Progress in the Use of Renewable Energy Sources to Power Water Desalination Plants. Desalination, 435, 97-113. https://doi.org/10.1016/j.desal.2017.11.018
[30]  Panagopoulos, A., Haralambous, K.J. and Loizidou, M. (2019) Desalination Brine Disposal Methods and Treatment Technologies—A Review. Science of the Total Environment, 693, Article ID: 133545. https://doi.org/10.1016/j.scitotenv.2019.07.351
[31]  Choi, J., Oh, Y., Chae, S. and Hong, S. (2019) Membrane Capacitive Deionization-Reverse Electrodialysis Hybrid System for Improving Energy Efficiency of Reverse Osmosis Seawater Desalination. Desalination, 462, 19-28. https://doi.org/10.1016/j.desal.2019.04.003
[32]  Van der Bruggen, B. and Vandecasteele, C. (2002) Distillation vs. Membrane Filtration: Overview of Process Evolutions in Seawater Desalination. Desalination, 143, 207-218. https://doi.org/10.1016/S0011-9164(02)00259-X
[33]  Mabrouk, A.N. and Fath, H.E.S. (2015) Technoeconomic Study of a Novel Integrated Thermal MSF-MED Desalination Technology. Desalination, 371, 115-125. https://doi.org/10.1016/j.desal.2015.05.025
[34]  Tarnacki, K., Meneses, M., Melin, T., van Medevoort, J. and Jansen, A. (2012) Environmental Assessment of Desalination Processes: Reverse Osmosis and Memstill?. Desalination, 296, 69-80. https://doi.org/10.1016/j.desal.2012.04.009
[35]  Ghalavand, Y., Hatamipour, M.S. and Rahimi, A. (2015) A Review on Energy Consumption of Desalination Processes. Desalination and Water Treatment, 54, 1526-1541.
[36]  Lattemann, S. and H?pner, T. (2008) Environmental Impact and Impact Assessment of Seawater Desalination. Desalination, 220, 1-15. https://doi.org/10.1016/j.desal.2007.03.009
[37]  Greenlee, L.F., Lawler, D.F., Freeman, B.D., Marrot, B. and Moulin, P. (2009) Reverse Osmosis Desalination: Water Sources, Technology, and Today’s Challenges. Water Research, 43, 2317-2348. https://doi.org/10.1016/j.watres.2009.03.010
[38]  Ghernaout, D., El-Wakil, A., Alghamdi, A., Elboughdiri, N. and Mahjoubi, A. (2018) Membrane Post-Synthesis Modifications and How it Came about. International Journal of Advances in Applied Sciences, 5, 60-64. https://doi.org/10.21833/ijaas.2018.02.010
[39]  Ghernaout, D. (2020) New Configurations and Techniques for Controlling Membrane Bioreactor (MBR) Fouling. Open Access Library Journal, 7, e6579.
[40]  Qasim, M., Badrelzaman, M., Darwish, N.N., Darwish, N.A. and Hilal, N. (2019) Reverse Osmosis Desalination: A State-of-the-Art Review. Desalination, 459, 59-104. https://doi.org/10.1016/j.desal.2019.02.008
[41]  Ang, W.L., Mohammad, A.W., Johnson, D. and Hilal, N. (2020) Unlocking the Application Potential of Forward Osmosis through Integrated/Hybrid Process. Science of the Total Environment, 706, Article ID: 136047. https://doi.org/10.1016/j.scitotenv.2019.136047
[42]  Subramani, A. and Jacangelo, J.G. (2015) Emerging Desalination Technologies for Water Treatment: A Critical Review. Water Research, 75, 164-187. https://doi.org/10.1016/j.watres.2015.02.032
[43]  Darwish, M.A., Abdulrahim, H.K., Hassan, A.S., Mabrouk, A.A. and Sharif, A.O. (2016) The Forward Osmosis and Desalination. Desalination and Water Treatment, 57, 4269-4295. https://doi.org/10.1080/19443994.2015.1066270
[44]  González, D., Amigo, J. and Suárez, F. (2017) Membrane Distillation: Perspectives for Sustainable and Improved Desalination. Renewable and Sustainable Energy Review, 80, 238-259. https://doi.org/10.1016/j.rser.2017.05.078
[45]  Sanmartino, J.A., Khayet, M. and García-Payo, M.C. (2016) Desalination by Membrane Distillation. In: Hankins, N.P. and Singh, R., Eds., Emerging Membrane Technology for Sustainable Water Treatment, Elsevier B.V., Amsterdam, 77-109. https://doi.org/10.1016/B978-0-444-63312-5.00004-8
[46]  AlMarzooqi, F.A., Al Ghaferi, A.A., Saadat, I. and Hilal, N. (2014) Application of Capacitive Deionisation in Water Desalination: A Review. Desalination, 342, 3-15. https://doi.org/10.1016/j.desal.2014.02.031
[47]  Moustafa, H.M., Obaid, M., Nassar, N.M., Abdelkareem, M.A. and Mahmoud, M.S. (2020) Titanium Dioxide-Decorated rGO as an Effective Electrode for Ultrahigh-Performance Capacitive Deionization. Separation and Purification Technology, 235, Article ID: 116178. https://doi.org/10.1016/j.seppur.2019.116178
[48]  Ng, K.C., Thu, K., Kim, Y., Chakraborty, A. and Amy, G. (2013) Adsorption Desalination: An Emerging Low-Cost Thermal Desalination Method. Desalination, 308, 161-179. https://doi.org/10.1016/j.desal.2012.07.030
[49]  Williams, P.M., Ahmad, M. and Connolly, B.S. (2013) Freeze Desalination: An Assessment of an Ice Maker Machine for Desalting Brines. Desalination, 308, 219-224. https://doi.org/10.1016/j.desal.2012.07.037
[50]  Kalista, B., Shin, H., Cho, J. and Jang, A. (2018) Current Development and Future Prospect Review of Freeze Desalination. Desalination, 447, 167-181. https://doi.org/10.1016/j.desal.2018.09.009
[51]  Mannan, M., Alhaj, M., Mabrouk, A.N. and Al-Ghamdi, S.G. (2019) Examining the Life-Cycle Environmental Impacts of Desalination: A Case Study in the State of Qatar. Desalination, 452, 238-246. https://doi.org/10.1016/j.desal.2018.11.017
[52]  Alharbi, O.A., Phillips, M.R., Williams, A.T., Gheith, A.M., Bantan, R.A. and Rasul, N.M. (2012) Desalination Impacts on the Coastal Environment: Ash Shuqayq, Saudi Arabia. Science of the Total Environment, 421-422, 163-172. https://doi.org/10.1016/j.scitotenv.2012.01.050
[53]  Ghernaout, D., Elboughdiri, N. and Al Arni, S. (2020) New Insights towards Disinfecting Viruses–Short Notes. Journal of Water Reuse and Desalination, London. https://doi.org/10.2166/wrd.2020.050
[54]  Ghernaout, D. (2020) Demobilizing Antibiotic-Resistant Bacteria and Antibiotic Resistance Genes by Electrochemical Technology: New insights. Open Access Library Journal, 7, 1-18. https://doi.org/10.4236/oalib.1106685
[55]  Ghernaout, D. (2020) Electric field (EF) in the Core of the Electrochemical (EC) Disinfection. Open Access Library Journal, 7, 1-20.
[56]  Ghernaout, D., Ghernaout, B., Saiba, A., Boucherit, A. and Kellil, A. (2009) Removal of Humic Acids by Continuous Electromagnetic Treatment Followed by Electrocoagulation in Batch Using Aluminium Electrodes. Desalination, 239, 295-308. https://doi.org/10.1016/j.desal.2008.04.001
[57]  Ghernaout, D., Ghernaout, B., Boucherit, A., Naceur, M.W., Khelifa, A. and Kellil, A. (2009) Study on Mechanism of Electrocoagulation with Iron Electrodes in Idealised Conditions and Electrocoagulation of Humic Acids Solution in Batch Using Aluminium Electrodes. Desalination and Water Treatment, 8, 91-99. https://doi.org/10.5004/dwt.2009.668
[58]  Ghernaout, D., Al-Ghonamy, A.I., Ait Messaoudene, N., Aichouni, M., Naceur, M.W., Benchelighem, F.Z. and Boucherit, A. (2015) Electrocoagulation of Direct Brown 2 (DB) and BF Cibacete Blue (CB) Using Aluminum Electrodes. Separation Science and Technology, 50, 1413-1420. https://doi.org/10.1080/01496395.2014.982763
[59]  Ghernaout, D., Laribi, C., Alghamdi, A., Ghernaout, B., Ait Messaoudene, N. and Aichouni, M. (2018) Decolorization of BF Cibacete Blue (CB) and Red Solophenyle 3BL (RS) Using Aluminum Sulfate and Ferric Chloride. World Journal of Applied Chemistry, 3, 32-40. https://doi.org/10.11648/j.wjac.20180302.11
[60]  Irki, S., Ghernaout, D., Naceur, M.W., Alghamdi, A. and Aichouni, M. (2018) Decolorization of Methyl Orange (MO) by Electrocoagulation (EC) Using Iron Electrodes under a Magnetic Field (MF). II. Effect of Connection Mode. World Journal of Applied Chemistry, 3, 56-64. https://doi.org/10.11648/j.wjac.20180302.13
[61]  Ghernaout, D. and Elboughdiri, N. (2019) Iron Electrocoagulation Process for Disinfecting Water—A Review. Applied Engineering, 3, 154-158.
[62]  Ghernaout, B., Ghernaout, D. and Saiba, A. (2010) Algae and Cyanotoxins Removal by Coagulation/Flocculation: A Review. Desalination and Water Treatment, 20, 133-143. https://doi.org/10.5004/dwt.2010.1202
[63]  Ghernaout, D. and Ghernaout, B. (2012) Sweep Flocculation as a Second Form of Charge Neutralisation—A Review. Desalination and Water Treatment, 44, 15-28. https://doi.org/10.1080/19443994.2012.691699
[64]  Ghernaout, D., Irki, S. and Boucherit, A. (2014) Removal of Cu2 and Cd2 , and Humic Acid and Phenol by Electrocoagulation Using Iron Electrodes. Desalination and Water Treatment, 52, 3256-3270. https://doi.org/10.1080/19443994.2013.852484
[65]  Ghernaout, D., Al-Ghonamy, A.I., Naceur, M.W., Boucherit, A., Messaoudene, N.A., Aichouni, M., Mahjoubi, A.A. and Elboughdiri, N.A. (2015) Controlling Coagulation Process: From Zeta Potential to Streaming Potential. American Journal of Environmental Protection, 4, 16-27. https://doi.org/10.11648/j.ajeps.s.2015040501.12
[66]  Ghernaout, D., Badis, A., Braikia, G., Mataam, N., Fekhar, M., Ghernaout, B. and Boucherit, A. (2017) Enhanced Coagulation for Algae Removal in a Typical Algeria Water Treatment Plant. Environmental Engineering and Management Journal, 16, 2303-2315. https://doi.org/10.30638/eemj.2017.238
[67]  Irki, S., Ghernaout, D. and Naceur, M.W. (2017) Decolourization of Methyl Orange (MO) by Electrocoagulation (EC) Using iron Electrodes under a Magnetic Field (MF). Desalination and Water Treatment, 79, 368-377. https://doi.org/10.5004/dwt.2017.20797
[68]  Yaqub, M. and Lee, W. (2019) Zero-Liquid Discharge (ZLD) Technology for Resource Recovery from Wastewater: A Review. Science of the Total Environment, 681, 551-563. https://doi.org/10.1016/j.scitotenv.2019.05.062

Full-Text


comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413