All Title Author
Keywords Abstract

Publish in OALib Journal
ISSN: 2333-9721
APC: Only $99


How to Detect Quantum (de Broglie) Waves

DOI: 10.4236/oalib.1106741, PP. 1-5

Subject Areas: Quantum Mechanics, Modern Physics

Keywords: Quantum de Broglie Waves, The Action Reaction Principle in Quantum Mechanics

Full-Text   Cite this paper   Add to My Lib


A very simple (therefore strong) argument, grounded in the action reaction principle, predicts the existence of isolated quantum, de Broglie waves. In this article I propose an experimental set up able to detect these quantum waves. As far as quantum waves are associated to any kind of elementary particles, massive or massless, charged or neutral, etc., its character is probably gravitational, i.e., they are micro-gravitational waves. The quantum wave is isolated when a particle can follow two (or more) alternative paths which later on can rejoin and interfere. We know that the corpuscular particle follows one path while the wave follows both. This wave could perturb a laser beam, and this perturbation could be detected in a Mach-Zehnder interferometer.

Cite this paper

López, C. (2020). How to Detect Quantum (de Broglie) Waves. Open Access Library Journal, 7, e6741. doi:


[1]  de Broglie, L. (1923) Waves and Quanta. Nature, 112, 540.
[2]  de Broglie, L. (1924) Recherches sur la Th′eorie des Quanta. PhD Thesis, Masson, Paris.
[3]  Davisson, C.J. (1928) The Diffraction of Electrons by a Crystal of Nickel. Bell System Technical Journal, 7, 90-105.
[4]  Lopez, C. (2020) De Broglie Waves. Open Access Library Journal, 7, e6100.
[5]  Lopez, C. (2017) Relativistic Locality and the Action Reaction Principle Predict de Broglie Fields. Quantum Studies: Mathematics and Foundations, 4, 149-157.
[6]  Lopez, C. (2018) The Action Reaction Principle in Quantum Mechanics. In: Khrennikov, A. and Toni. B., Eds., Quantum Foundations, Probability and Information. 31-38.
[7]  Zehnder, L. (1891) Ein neuer Interferenzrefraktor. Zeitschrift für Instrumentenkunde, 11, 275-285.
[8]  Mach, L. (1892) Ueber einen Interferenzrefraktor. Zeitschrift für Instrumentenkunde, 12, 89-93.
[9]  Gerlach, W. and Stern, O. (1922) Das magnetische Moment des Silber-atoms. Zeitschrift für Physik, 9, 353-355.
[10]  Feoli, A. (2011) The Amplitude of the de Broglie Gravitational Waves. Modern Physics Letter A, 24, 2497-2505.
[11]  Agavriloaei, N. (2012) Matter Waves in a Static Gravitational Field. Journal of Modern Physics, 3, 750-754.
[12]  Logiurato, F. (2014) Relativistic Derivations of de Broglie and Plank-Einstein Equations. Journal of Modern Physics, 5, 1-7.


comments powered by Disqus

Contact Us


微信:OALib Journal