We present in this paper the temporal evolution of the contaminated population by coronavirus in Brazil and globally. We access those information analytically and numerically using a logistic model. Using the COVID-19 data from The Brazilian Ministry of Health (MS), from The World Health Organization—WHO, and from The Niteroi Health Foundation (FMS), we plot the curves for the contaminated population ramping-up, the population inflection, and the population saturation-plateau regime. Based on the simulations, and considering this more advanced phase of the pandemic, we present some action insights, which might be useful to generate more effectiveness in the actions of society in general, and also to create a more intense public awareness on the contamination hubs and surges that may emerge due to the reduction of social isolation at this more advanced phase of the pandemic.
Cite this paper
Assis, A. S. D. and Carvalho, V. W. D. (2020). Logistic Approach to COVID-19 Epidemic Evolution in Brazil. Open Access Library Journal, 7, e6600. doi: http://dx.doi.org/10.4236/oalib.1106600.
Cotta, R.M., Naveira-Cotta, C.P. and Magal, P. (2020) Parametric Identification and Public Health Measures Influence on the Covid-19 Epidemic Evolution in Brazil.
https://doi.org/10.1101/2020.03.31.20049130
Kriston, L. (2020) Projection of Cumulative Coronavirus Disease 2019 (Covid-19) Case Growth with a Hierarchical Logistic Model.
https://doi.org/10.2471/BLT.20.257386
“Hubs of Infection”: How Covid-19 Spread through Latin America’s Markets.
https://www.theguardian.com/world/2020/may/17/coronavirus-latin-america-markets-mexico-brazil-peru
Verhulst, P.E. (1844) Recherches mathématiques sur la loi d’accroissement de la population. Mémoires de l’Académie Royale des Sciences et des Lettres de Bruxelles, 18, 1-38.
(2014) Estudo analítico da equação de Fisher linearizada: Determinação de tamanhos mínimos de fragmentos populacionais/Renato Pacheco Villar, Dissertação de mestrado, universidade federal de alfenas.
Lopez, R.M., Morin, B.R. and Suslov, S.K. (2010) Logistic Models with Time-Dependent Coefficients and Some of Their Applications. Cornell University, Ithaca.
Goldstein, B.D. (2001) The Precautionary Principle Also Applies to Public Health Actions. American Journal of Public Health, 91, 1358-1361.
https://doi.org/10.2105/AJPH.91.9.1358
Von Sperling, M. (2014) Princípios do tratamento biológico de águas residuárias. Vol. 1. Introdução à qualidade das águas e ao tratamento de esgotos. 4th Edition, Editora UFMG, 472 p.
Wu, K., Darcet, D., Wang, Q. and Sornette, D. (2020) Generalized Logistic Growth Modeling of the COVID-19 Outbreak in 29 Provinces in China and in the Rest of the World. Cornnell University, Ithaca.
Bin, Y., Steptoe, A., Chen, L.J. and Ku, P.W. (2019) Social Isolation, Loneliness, and All-Cause Mortality in Patients with Cardiovascular Disease: A 10-Year Follow-Up Study. Psychosomatic Medicine, 82, 208-214.