全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

Electrochemical Degradation of Amoxicillin on a Ti/Ta2O5/Pt-RuO2-IrO22 Electrode

DOI: 10.4236/oalib.1106558, PP. 1-13

Subject Areas: Electrochemistry

Keywords: Amoxicillin, Electrooxidation, Platinum, Ruthenium Oxide, Iridium Oxide

Full-Text   Cite this paper   Add to My Lib

Abstract

This work deals with the degradation of Amoxcillin which is one of the antibiotics commonly used in human and veterinary medicine. For such an investigation, Pt-RuO2-IrO2 (PRI) electrode was used as anode and various parameters such as current density (20 - 100 mA/cm2), supporting electrolyte and chloride were monitored. The results showed that the amoxicillin oxidation reaction is diffusion controlled and its degradation rate increases as the applied current increases. The degradation of amoxicillin on the PRI electrode, in the absence of chloride, is very low with less than 10% of the COD abatement rate. But, in the presence of chloride, the degradation of the Amoxicillin on PRI electrode leads to its mineralization. During electrolysis, chloride was oxidized into chlorine under the form HClO at pH < 8 and ClO- at pH > 8 that contribute to a significant degradation of the Amoxicillin. The amoxicillin removal rate goes from 0.83% to 73.8% in the absence and in the presence of Cl-, respectively after 10 h of electrolysis. In addition, the degradation kinetic of amoxicillin in HClO4 is 10 times faster than in KClO4 and follows pseudo first-order reaction.

Cite this paper

Auguste, A. F. T. and Ouattara, L. (2021). Electrochemical Degradation of Amoxicillin on a Ti/Ta2O5/Pt-RuO2-IrO22 Electrode. Open Access Library Journal, 8, e6558. doi: http://dx.doi.org/10.4236/oalib.1106558.

References

[1]  Yao, K.M., Métongo, B.S., Trokourey, A. and Bokra, Y. (2007) Determination of Certain Parameters of Pollution in a Tropical Lagoon Bays: Ebrie Lagoon (Côte d’Ivoire). J. Océanol. Limnol. Abidjan, 4, 1-10.
[2]  Pohan, L.A.G., Kondro, K.H., Trokourey, A. and Ouattara, L. (2013) Influence of Chlorides on the Electrochemical Oxidation of Formic Acid on Thermally Prepared Platinum Electrodes. International Journal of Pure and Applied Sciences and Technology, 14, 33-43.
[3]  Placide, S.S., Mohamed, B., Loba, H.E.M., Auguste, A.F.T., Quand-Meme, G.C., Sanogo, I. and Ouattara, L. (2016) Assessment of the Physicochemical and Microbiological Parameters of a Teaching Hospital’s Wastewaters in Abidjan in Cote d’Ivoire. Journal of Water Resource and Protection, 8, 1251-1265. https://doi.org/10.4236/jwarp.2016.813096
[4]  Geissen, V., Mol, H., Klumpp, E., Günter, U., Marti, N., Van Der Ploeg, M., Sjoerd, E.A.T.M. and Coen, J.R. (2015) Emerging Pollutants in the Environment: A Challenge for Water Resource Management. International Soil and Water Conservation Research, 3, 57-65. https://doi.org/10.1016/j.iswcr.2015.03.002
[5]  Sayed, M., Shah, L.A., Khan, J.A., Shah, N.S., Nisar, J., Khan, H.M., Zhang, P.Y. and Khan, A.R. (2016) Efficient Photocatalytic Degradation of Norfloxacin in Aqueous Media by Hydrothermally Synthesized Immobilized TiO2/Ti Films with Exposed {001} Facets. The Journal of Physical Chemistry A, 120, 9916-9931. https://doi.org/10.1021/acs.jpca.6b09719
[6]  Liu, H.Q., Lam, J.C.W., Li, W.W., Yu, H.Q. and Lam, P.K.S. (2017) Spatial Distribution and Removal Performance of Pharmaceuticals in Municipal Wastewater Treatment Plants in China. Science of the Total Environment, 586, 1162-1169. https://doi.org/10.1016/j.scitotenv.2017.02.107
[7]  Anekwe, J.E., Mohamed, A.-E.A. and Stuart, H. (2017) Pharmaceuticals and Personal Care Products (PPCPs) in the Freshwater Aquatic Environment. Emerging Contaminants, 3, 1-16. https://doi.org/10.1016/j.emcon.2016.12.004
[8]  Wang, Y., Zhang, R., Li, J., Wu, Z., Yin, W., Schwarz, S., Tyrrell, J.M., Zheng, Y., Wang, S., Shen, Z., Liu, Z., Liu, J., Lei, L., Li, M., Zhang, Q., Wu, C., Zhang, Q., Wu, Y., Walsh, T.R. and Shen, J. (2017) Comprehensive Resistome Analysis Reveals the Prevalence of NDM and MCR-1 in Chinese Poultry Production. Nature Microbiology, 2, Article No. 16260. https://doi.org/10.1038/nmicrobiol.2016.260
[9]  Atashgahi, S., Sánchez-Andrea, I., Heipieper, H.J., van der Meer, J.R., Stams, A.J.M. and Smidt, H. (2018) Prospects for Harnessing Biocide Resistance for Bioremediation and Detoxification. Science, 360, 743-746. https://doi.org/10.1126/science.aar3778
[10]  Ash, R.J., Mauck, B. and Morgan, M. (2002) Antibiotic Resistance of Gram-Negative Bacteria in Rivers, United States. Emerging Infectious Diseases, 8, 713-716. https://doi.org/10.3201/eid0807.010264
[11]  Barancheshme, F. and Munir, M. (2018) Strategies to Combat Antibiotic Resistance in the Wastewater Treatment Plants. Frontiers in Microbiology, 8, 2603. https://doi.org/10.3389/fmicb.2017.02603
[12]  Cruz, N.D.L., Esquius, L., Gradjean, D., Magnet, A., Tungler, A., Alencastro, L.F.D. and Pulgarin, C. (2013) Degradation of Emergent Contaminants by UV, UV/H2O2 and Neutral Photo-Fenton at Pilot Scale in a Domestic Wastewater Treatment Plant. Water Research, 47, 5836-5845. https://doi.org/10.1016/j.watres.2013.07.005
[13]  Gagnon, C., Turcotte, P., Trépanier, S., Gagné, F. and Cejka, P.-J. (2014) Impacts of Municipal Wastewater Oxidative Treatments: Changes in Metal Physical Speciation and Bioavailability. Chemosphere, 97, 86-91. https://doi.org/10.1016/j.chemosphere.2013.11.017
[14]  Silva, W.L.D., Lansarin, M.A., Livotto, P.R. and Santos, J.H.Z.D. (2015) Photocatalytic Degradation of Drugs by Supported Titania-Based Catalysts Produced from Petrochemical Plant Residue. Powder Technology, 279, 166-172. https://doi.org/10.1016/j.powtec.2015.03.045
[15]  Pera-Titus, M., Garcia-Molina, V., Banos, M.A., Giménez, J. and Esplugas, S. (2004) Degradation of Chlorophenols by Means of Advanced Oxidation Processes: A General Review. Applied Catalysis B: Environmental, 47, 219-256. https://doi.org/10.1016/j.apcatb.2003.09.010
[16]  Hodges, B.C., Cates, E.L. and Kim, J.H. (2018) Challenges and Prospects of Advanced Oxidation Water Treatment Processes Using Catalytic Nanomaterials. Nature Nanotechnology, 13, 642-650. https://doi.org/10.1038/s41565-018-0216-x
[17]  Yang, X., Cheng, X., Elzatahry, A.A., Chen, J., Alghamdi, A. and Deng, Y. (2019) Recyclable Fenton-Like Catalyst Based on Zeolite Y Supported Ultrafine, Highly-Dispersed Fe2O3 Nanoparticles for Removal of Organics under Mild Conditions. Chinese Chemical Letters, 30, 324-330. https://doi.org/10.1016/j.cclet.2018.06.026
[18]  Garcia-Segura S., Ocon J.D. and Chong M.N. (2018) Electrochemical Oxidation Remediation of Real Wastewater Effluents—A Review. Process Safety and Environmental Protection, 113, 48-67. https://doi.org/10.1016/j.psep.2017.09.014
[19]  Fierro, S., Ouattara, L., Calderon, E.H., Passas-Lagos, E., Baltruschat, H. and Comninellis, C. (2009) Investigation of Formica Cid Oxidation on Ti/IrO2 Electrodes. Electrochimica Acta, 54, 2056-2061. https://doi.org/10.1016/j.electacta.2008.06.060
[20]  Fankhauser, A., Ouattara, L., Griesbac, U., Fischer, A., Pütter, H. and Comninellis, C. (2008) Investigation of the Anodic Acetoxylation of p-Methylanisole (p-MA) in Glacial Acetic Acid Medium Using Graphite (sp2) and BDD (sp3) Electrodes. Journal of Electroanalytical Chemistry, 614, 107-112. https://doi.org/10.1016/j.jelechem.2007.11.008
[21]  Sirés, I., Oturan, N., Oturan, M.A., Rodríguez, R.M., Garrido, J.A. and Brillas, E. (2007) Electro-Fenton Degradation of Antimicrobials Triclosan and Triclocarban. Electrochimica Acta, 52, 5493-5503. https://doi.org/10.1016/j.electacta.2007.03.011
[22]  Brillas, E., Banos, M.A., Skoumal, M., Cabot, P.L., Garrido, J.A. and Rodriguez, R.M. (2007) Degradation of the Herbicide 2,4-DP by Anodic Oxidation, Electro-Fenton and Photo Electron-Fenton Using Platinum and Boron-Doped Diamond Anodes. Chemosphere, 68, 199-209. https://doi.org/10.1016/j.chemosphere.2007.01.038
[23]  Gao, J., Zhao, G., Liu, M. and Li, D. (2009) Mechanism of Enhanced Electrochemical Oxidation of 2,4-Dichlo Rophenoxyacetic Acid with in Situ Microwave Active Boron-Doped Diamond and Platinum Anodes. Journal of Physical Chemistry A, 113, 10466-10473. https://doi.org/10.1021/jp9057675
[24]  Liu, L., Zhao, G., Wu, M., Lei, Y. and Geng, R. (2009) Electrochemical Degradation of Chlorobenzene on Boron-Doped Diamond and Platinum Electrodes. Journal of Hazardous Materials, 168, 179-186. https://doi.org/10.1016/j.jhazmat.2009.02.004
[25]  Brillas, E., Garcia, S.S., Skoumal, M. and Arias, C. (2010) Electrochemical Incineration of Diclofenac in Neutral Aqueous Medium by Anodic Oxidation Using Pt and Boron-Doped Diamond Anodes. Chemosphere, 79, 605-612. https://doi.org/10.1016/j.chemosphere.2010.03.004
[26]  Appia, F.T.A., Gnamba, C.Q.-M., Kambiré, O., Berté, M., Sadia, S.P., Sanogo, I. and Ouattara, L. (2016) Electrochemical Oxidation of Amoxicillin in Its Commercial Formulation on Thermally Prepared RuO2/Ti. Journal of Electrochemical Science and Technology, 7, 82-89. https://doi.org/10.33961/JECST.2016.7.1.82
[27]  Kambire, O., Pohan, L.A.G., Appia, F.T.A. and Ouattara, L. (2015) Anodic Oxidation of Chlorides on Platinum Modified by Metallic Oxides. International Journal of Pure and Applied Sciences and Technology, 27, 27-43.
[28]  Kambire, O., Appia, F.T.A. and Ouattara, L. (2015) Oxygen and Chlorine Evolution on Ruthenium Dioxide Modified by Platinum in Acid Solutions. La Revue Ivoirienne des Sciences et Technologie, 25, 21-33.
[29]  Gengec, E., Kobya, M., Demirbas, E. and Akyol, A.O. (2012) Optimization of Baker’s Yeast Wastewater Using Response Surface Methodology by Electrocoagulation. Desalination, 286, 200-209. https://doi.org/10.1016/j.desal.2011.11.023
[30]  Gnamba, C.Q.-M., Appia, F.T.A., Loba, E.M.H., Sanogo, I. and Ouattara, L. (2015) Electrochemical Oxidation of Amoxicillin in Its Pharmaceutical Formulation at Boron Doped Diamond (BDD) Electrode. Journal of Electrochemical Science and Engineering, 5, 129-143. https://doi.org/10.5599/jese.186
[31]  Gherardini, L., Michaud, P.A., Panizza, M.M., Comninellis, C. and Vatistas, N. (2001) Electrochemical Oxidation of 4-Chlorophenol for Wastewater Treatment: Definition of Normalized Current Efficiency (Φ). Journal of the Electrochemical Society, 148, 78-82. https://doi.org/10.1149/1.1368105
[32]  Soni, B.D., Patel, U.D., Agrawal, A. and Ruparelia, J.P. (2017) Application of BDD and DSA Electrodes for the Removal of RB 5 in Batch and Continuous Operation. Journal of Water Process Engineering, 17, 11-21. https://doi.org/10.1016/j.jwpe.2017.01.009
[33]  Periyasamy, S. and Muthuchamy, M. (2018) Electrochemical Oxidation of Paracetamol in Water by Graphite Anode: Effect of pH, Electrolyte Concentration and Current Density. Journal of Environmental Chemical Engineering, 6, 7358-7367. https://doi.org/10.1016/j.jece.2018.08.036
[34]  Kaur, R., Kushwaha, J.P. and Singh, N. (2019) Amoxicillin Electro-Catalytic Oxidation Using Ti/RuO2 Anode: Mechanism, Oxidation Products and Degradation Pathway. Electrochimica Acta, 296, 856-866. https://doi.org/10.1016/j.electacta.2018.11.114
[35]  Neto, A.S. and de Andrade, A.R. (2009) Electrooxidation of Glyphosate Herbicide at Different DSA? Compositions: pH, Concentration and Supporting Electrolyte Effect. Electrochimica Acta, 54, 2039-2045. https://doi.org/10.1016/j.electacta.2008.07.019
[36]  Giraldo, A.L., Erazo-Erazo, E.D., Flórez-Acosta, O.A., Serna-Galvis, E.A. and Torres-Palma, R.A. (2015) Degradation of the Antibiotic Oxacillin in Water by Anodic Oxidation with Ti/IrO2 Anodes: Evaluation of Degradation Routes, Organic By-Products and Effects of Water Matrix Components. Chemical Engineering Journal, 279, 103-114. https://doi.org/10.1016/j.cej.2015.04.140

Full-Text


comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413