全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

Controlling COVID-19 Pandemic through Wastewater Monitoring

DOI: 10.4236/oalib.1106411, PP. 1-20

Subject Areas: Public Health, Environmental Chemistry

Keywords: Coronavirus Disease 2019 (COVID-19), Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), Wastewater-Based Epidemiology (WBE), Wastewater Treatment, Pathogens, Viruses

Full-Text   Cite this paper   Add to My Lib

Abstract

The continuing global pandemic of coronavirus disease 2019 (COVID-19) produced via severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been a Public Health Emergency of International Concern. Even if the main transmission pathways of SARS-CoV-2 are inhalation from person-to-person and aerosol/droplet transmission, it is proved that the viral ribonucleic acid (RNA) could occur in wastewater, proposing the necessity to better comprehend wastewater as possible sources of epidemiological data and human health risks. This review focuses on the fate and transport of enteric pathogens in nature. A special interest is accorded to viruses and COVID-19. Further, this work discusses the present facts concerning the proof for the emergence of SARS-CoV-2 and related CoVs in wastewater, controlling wastewater for comprehending COVID-19, and endurance and demobilization of CoVs and enveloped surrogate viruses in water and wastewater matrices. There has been growing evidence of gastrointestinal symptoms provoked by SARS-CoV-2 contagions and the occurrence of viral RNA not only in feces of COVID-19 patients but in wastewater. One of the main dares in SARS-CoV-2 detection/quantification in wastewater samples is the shortage of an optimized and standardized protocol. The present comprehension of the possible contribution of wastewater in SARS-CoV-2 transmission is considerably restricted by knowledge gaps in its presence, endurance, and elimination in wastewater. There is a pressing necessity for additional study to define strategies for wastewater observation and comprehend the consequences of the appearance of SARS-CoV-2 in wastewater.

Cite this paper

Ghernaout, D. and Ghernaout, B. (2020). Controlling COVID-19 Pandemic through Wastewater Monitoring. Open Access Library Journal, 7, e6411. doi: http://dx.doi.org/10.4236/oalib.1106411.

References

[1]  Gerba, C.P. (2015) Environmentally Transmitted Pathogens. In: Pepper, I.L., Gerba, C.P. and Gentry, T.J., Eds., Environmental Microbiology, 3rd Edition, Elsevier Inc., Amsterdam, Ch. 22. https://doi.org/10.1016/B978-0-12-394626-3.00001-6
[2]  Gerba, C.P. and Pepper, I.L. (2015) Drinking Water Treatment and Distribution. In: Pepper, I.L., Gerba, C.P. and Gentry, T.J., Eds., Environmental Microbiology, 3rd Edition, Elsevier Inc., Amsterdam, Ch. 28. https://doi.org/10.1016/B978-0-12-394626-3.00001-6
[3]  Ghernaout, D., Badis, A., Ghernaout, B. and Kellil, A. (2008) Application of Electrocoagulation in Escherichia coli Culture and Two Surface Waters. Desalination, 219, 118-125. https://doi.org/10.1016/j.desal.2007.05.010
[4]  Ghernaout, D. and Ghernaout, B. (2010) From Chemical Disinfection to Electrodisinfection: The Obligatory Itinerary? Desalination and Water Treatment, 16, 156-175. https://doi.org/10.5004/dwt.2010.1085
[5]  Belhout, D., Ghernaout, D., Djezzar-Douakh, S. and Kellil, A. (2010) Electrocoagulation of a Raw Water of Ghrib Dam (Algeria) in Batch Using Iron Electrodes. Desalination and Water Treatment, 16, 1-9. https://doi.org/10.5004/dwt.2010.1081
[6]  Ghernaout, B., Ghernaout, D. and Saiba, A. (2010) Algae and Cyanotoxins Removal by Coagulation/Flocculation: A Review. Desalination and Water Treatment, 20, 133-143. https://doi.org/10.5004/dwt.2010.1202
[7]  Ghernaout, D. (2019) Virus Removal by Electrocoagulation and Electrooxidation: New Findings and Future Trends. Journal of Environmental Science and Allied Research, 2019, 85-90.
[8]  Ghernaout, D. and Elboughdiri, N. (2020) Environmental Engineering for Stopping Viruses Pandemics. Open Access Library Journal, 7, e6299.
[9]  Ghernaout, D. and Elboughdiri, N. (2020) Disinfecting Water: Plasma Discharge for Removing Coronaviruses. Open Access Library Journal, 7, e6314. https://doi.org/10.4236/oalib.1106314
[10]  Ghernaout, D. (2017) Microorganisms’ Electrochemical Disinfection Phenomena. EC Microbiology, 9, 160-169.
[11]  Ghernaout, D., Alghamdi, A. and Ghernaout, B. (2019) Microorganisms’ Killing: Chemical Disinfection vs. Electrodisinfection. Applied Engineering, 3, 13-19.
[12]  Ghernaout, D. and Elboughdiri, N. (2019) Upgrading Wastewater Treatment Plant to Obtain Drinking Water. Open Access Library Journal, 6, e5959. https://doi.org/10.4236/oalib.1105959
[13]  Ghernaout, D. and Elboughdiri, N. (2020) Electrochemical Technology for Wastewater Treatment: Dares and Trends. Open Access Library Journal, 7, e6020.
[14]  Ghernaout, D., Elboughdiri, N. and Ghareba, S. (2020) Fenton Technology for Wastewater Treatment: Dares and Trends. Open Access Library Journal, 7, e6045. https://doi.org/10.4236/oalib.1106045
[15]  Ghernaout, D. and Elboughdiri, N. (2020) Antibiotics Resistance in Water Mediums: Background, Facts, and Trends. Applied Engineering, 4, 1-6. https://doi.org/10.4236/oalib.1106003
[16]  Ghernaout, D. and Elboughdiri, N. (2020) Removing Antibiotic-Resistant Bacteria (ARB) Carrying Genes (ARGs): Challenges and Future Trends. Open Access Library Journal, 7, e6003. https://doi.org/10.4236/oalib.1106003
[17]  Ghernaout, D. and Elboughdiri, N. (2020) Should We Forbid the Consumption of Antibiotics to Stop the Spread of Resistances in Nature? Open Access Library Journal, 7, e6138.
[18]  Ghernaout, D. and Elboughdiri, N. (2020) On the Treatment Trains for Municipal Wastewater Reuse for Irrigation. Open Access Library Journal, 7, e6088.
[19]  Ghernaout, D. and Elboughdiri, N. (2020) Advanced Oxidation Processes for Wastewater Treatment: Facts and Future Trends. Open Access Library Journal, 7, e6139.
[20]  Ghernaout, D. and Elboughdiri, N. (2020) Domestic Wastewater Treatment: Difficulties and Reasons, and Prospective Solutions—China as an Example. Open Access Library Journal, 7, e6141.
[21]  Ghernaout, D. (2013) The Best Available Technology of Water/Wastewater Treatment and Seawater Desalination: Simulation of the Open Sky Seawater Distillation. Green and Sustainable Chemistry, 3, 68-88. https://doi.org/10.4236/gsc.2013.32012
[22]  Ghernaout, D. (2018) Increasing Trends towards Drinking Water Reclamation from Treated Wastewater. World Journal of Applied Chemistry, 3, 1-9. https://doi.org/10.11648/j.wjac.20180301.11
[23]  Ghernaout, D. and Elboughdiri, N. (2019) Electrocoagulation Process Intensification for Disinfecting Water—A Review. Applied Engineering, 3, 140-147.
[24]  Ghernaout, D., Alshammari, Y. and Alghamdi, A. (2018) Improving Energetically Operational Procedures in Wastewater Treatment Plants. International Journal of Advances in Applied Sciences, 5, 64-72. https://doi.org/10.21833/ijaas.2018.09.010
[25]  Ghernaout, D. (2019) Reviviscence of Biological Wastewater Treatment—A Review. Applied Engineering, 3, 46-55.
[26]  Ghernaout, D. and Elboughdiri, N. (2020) Eliminating Cyanobacteria and Controlling Algal Organic Matter—Short Notes. Open Access Library Journal, 7, e6252. https://doi.org/10.4236/oalib.1106252
[27]  Ghernaout, D., Elboughdiri, N., Ghareba, S. and Salih, A. (2020) Coagulation Process for Removing Algae and Algal Organic Matter—An Overview. Open Access Library Journal, 7, e6272. https://doi.org/10.4236/oalib.1106272
[28]  Ghernaout, D. and Ghernaout, B. (2012) On the Concept of the Future Drinking Water Treatment Plant: Algae Harvesting from the Algal Biomass for Biodiesel Production—A Review. Desalination and Water Treatment, 49, 1-18. https://doi.org/10.1080/19443994.2012.708191
[29]  Ghernaout, D., Benblidia, C. and Khemici, F. (2015) Microalgae Removal from Ghrib Dam (Ain Defla, Algeria) Water by Electroflotation Using Stainless Steel Electrodes. Desalination and Water Treatment, 54, 3328-3337. https://doi.org/10.1080/19443994.2014.907749
[30]  Ghernaout, D., Badis, A., Braikia, G., Mataam, N., Fekhar, M., Ghernaout, B. and Boucherit, A. (2017) Enhanced Coagulation for Algae Removal in a Typical Algeria Water Treatment Plant. Environmental Engineering and Management Journal, 16, 2303-2315. https://doi.org/10.30638/eemj.2017.238
[31]  Kellali, Y. and Ghernaout, D. (2019) Physicochemical and Algal Study of Three Dams (Algeria) and Removal of Microalgae by Enhanced Coagulation. Applied Engineering, 3, 56-64.
[32]  Ghernaout, D. (2019) Electrocoagulation Process for Microalgal Biotechnology—A Review. Applied Engineering, 3, 85-94.
[33]  Ghernaout, D. (2014) The Hydrophilic/Hydrophobic Ratio vs. Dissolved Organics Removal by Coagulation—A Review. Journal of King Saud University—Science, 26, 169-180. https://doi.org/10.1016/j.jksus.2013.09.005
[34]  Ghernaout, D., Al-Ghonamy, A.I., Boucherit, A., Ghernaout, B., Naceur, M.W., Ait Messaoudene, N., Aichouni, M., Mahjoubi, A.A. and Elboughdiri, N.A. (2015) Brownian Motion and Coagulation Process. American Journal of Environmental Protection, 4, 1-15. https://doi.org/10.11648/j.ajeps.s.2015040501.11
[35]  Kitajima, M., Ahmed, W., Bibby, K., Carducci, A., Gerba, C.P., Hamilton, K.A., Haramoto, E. and Rose, J.B. (2020) SARS-CoV-2 in Wastewater: State of the Knowledge and Research Needs. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2020.139076
[36]  Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., Zhao, X., Huang, B., Shi, W., Lu, R., Niu, P., Zhan, F., Ma, X., Wang, D., Xu, W., Wu, G., Gao, G.F. and Tan, W. (2020) A Novel Coronavirus from Patients with Pneumonia in China, 2019. The New England Journal of Medicine, 382, 727-733. https://doi.org/10.1056/NEJMoa2001017
[37]  Ghernaout, D. and Elboughdiri, N. (2019) Iron Electrocoagulation Process for Disinfecting Water—A Review. Applied Engineering, 3, 154-158.
[38]  Ghernaout, D. (2019) Disinfection via Electrocoagulation Process: Implied Mechanisms and Future Tendencies. EC Microbiology, 15, 79-90.
[39]  Ghernaout, D. and Elboughdiri, N. (2019) Mechanistic Insight into Disinfection Using Ferrate(VI). Open Access Library Journal, 6, e5946.
[40]  Ghernaout, D. and Elboughdiri, N. (2019) Water Disinfection: Ferrate(VI) as the Greenest Chemical—A Review. Applied Engineering, 3, 171-180.
[41]  Ghernaout, D. and Elboughdiri, N. (2020) Strategies for Reducing Disinfection By-Products Formation during Electrocoagulation. Open Access Library Journal, 7, e6076. https://doi.org/10.4236/oalib.1106076
[42]  Ghernaout, D. and Elboughdiri, N. (2020) Electrocoagulation Process in the Context of Disinfection Mechanism. Open Access Library Journal, 7, e6083.
[43]  Ghernaout, D. and Elboughdiri, N. (2020) Disinfection By-Products: Presence and Elimination in Drinking Water. Open Access Library Journal, 7, e6140.
[44]  Ghernaout, D. and Elboughdiri, N. (2020) Controlling Disinfection By-Products Formation in Rainwater: Technologies and Trends. Open Access Library Journal, 7, e6162. https://doi.org/10.4236/oalib.1106162
[45]  Ghernaout, D., Elboughdiri, N., Ghareba, S. and Salih, A. (2020) Electrochemical Advanced Oxidation Processes (EAOPs) for Disinfecting Water—Fresh Perspectives. Open Access Library Journal, 7, e6257. https://doi.org/10.4236/oalib.1106257
[46]  Lodder, W. and de Roda Husman, A. (2020) SARS-CoV-2 in Wastewater: Potential Health Risk, But Also Data Source. The Lancet Gastroenterology and Hepatology, 1253, 30087. https://doi.org/10.1016/S2468-1253(20)30087-X
[47]  Haramoto, E., Kitajima, M., Katayama, H., Ito, T. and Ohgaki, S. (2009) Development of Virus Concentration Methods for Detection of Koi Herpesvirus in Water. Journal of Fish Diseases, 32, 297-300. https://doi.org/10.1111/j.1365-2761.2008.00977.x
[48]  Ye, Y., Ellenberg, R.M., Graham, K.E. and Wigginton, K.R. (2016) Survivability, Partitioning, and Recovery of Enveloped Viruses in Untreated Municipal Wastewater. Environmental Science & Technology, 50, 5077-5085. https://doi.org/10.1021/acs.est.6b00876
[49]  Wong, M.V.M., Hashsham, S.A., Gulari, E., Rouillard, J.M., Aw, T.G. and Rose, J.B. (2013) Detection and Characterization of Human Pathogenic Viruses Circulating in Community Wastewater Using Multi Target Microarrays and Polymerase Chain Reaction. Journal of Water and Health, 11, 659-670. https://doi.org/10.2166/wh.2013.322
[50]  Bibby, K. and Peccia, J. (2013) Identification of Viral Pathogen Diversity in Sewage Sludge by Metagenome Analysis. Environmental Science & Technology, 47, 1945-1951. https://doi.org/10.1021/es305181x
[51]  Blanco, A., Abid, I., Al-Otaibi, N., Pérez-Rodríguez, F.J., Fuentes, C., Guix, S., Pintó, R.M. and Bosch, A. (2019) Glass Wool Concentration Optimization for the Detection of Enveloped and Non-Enveloped Waterborne Viruses. Food and Environmental Virology, 11, 184-192. https://doi.org/10.1007/s12560-019-09378-0
[52]  McKinney, K.R., Gong, Y.Y. and Lewis, T.G. (2006) Environmental Transmission of SARS at Amoy Gardens. Journal of Environmental Health, 68, 26-30.
[53]  Sinclair, R.G., Choi, C.Y., Riley, M.R. and Gerba, C.P. (2008) Pathogen Surveillance through Monitoring of Sewer Systems. Advances in Applied Microbiology, 65, 249-269. https://doi.org/10.1016/S0065-2164(08)00609-6
[54]  Ghernaout, D., Elboughdiri, N., Ghareba, S. and Salih, A. (2020) Disinfecting Water with the Carbon Fiber-Based Flow-Through Electrode System (FES): Towards Axial Dispersion and Velocity Profile. Open Access Library Journal, 7, e6238. https://doi.org/10.4236/oalib.1106238
[55]  Ghernaout, D., Elboughdiri, N., Alghamdi, A. and Ghernaout, B. (2020) Trends in Decreasing Disinfection By-Products Formation during Electrochemical Technologies. Open Access Library Journal, 7, e6337. https://doi.org/10.4236/oalib.1106337
[56]  Johansson, M.A., Vasconcelos, P.F.C. and Staples, J.E. (2014) The Whole Iceberg: Estimating the Incidence of Yellow Fever Virus Infection from the Number of Severe Cases. Transactions of the Royal Society of Tropical Medicine and Hygiene, 108, 482-487. https://doi.org/10.1093/trstmh/tru092
[57]  Ghernaout, D., Ghernaout, B. and Naceur, M.W. (2011) Embodying the Chemical Water Treatment in the Green Chemistry—A Review. Desalination, 271, 1-10. https://doi.org/10.1016/j.desal.2011.01.032
[58]  Ghernaout, D. (2018) Electrocoagulation Process: Achievements and Green Perspectives. Colloid and Surface Science, 3, 1-5. https://doi.org/10.11648/j.css.20180301.11
[59]  Okabayashi, T., Yokota, S.I., Ohkoshi, Y., Ohuchi, H., Yoshida, Y., Kikuchi, M., Yano, K. and Fujii, N. (2008) Occurrence of Norovirus Infections Unrelated to Norovirus Outbreaks in an Asymptomatic Food Handler Population. Journal of Clinical Microbiology, 46, 1985-1988. https://doi.org/10.1128/JCM.00305-08
[60]  Bonanno Ferraro, G., Mancini, P., Veneri, C., Iaconelli, M., Suffredini, E., Brandtner, D. and La Rosa, G. (2020) Evidence of Saffold Virus Circulation in Italy Provided through Environmental Surveillance. Letters in Applied Microbiology, 70, 102-108. https://doi.org/10.1111/lam.13249
[61]  Mizumoto, K., Kagaya, K., Zarebski, A. and Chowell, G. (2020) Estimating the Asymptomatic Proportion of Coronavirus Disease 2019 (COVID-19) Cases on Board the Diamond Princess Cruise Ship, Yokohama, Japan, 2020. Eurosurveillance, 25, 1-5. https://doi.org/10.2807/1560-7917.ES.2020.25.10.2000180
[62]  Wang, X.W., Li, J., Guo, T., Zhen, B., Kong, Q., Yi, B., Li, Z., Song, N., Jin, M., Xiao, W., Zhu, X., Gu, C., Yin, J., Wei, W., Yao, W., Liu, C., Li, J., Ou, G., Wang, M., Fang, T., Wang, G., Qiu, Y., Wu, H., Chao, F. and Li, J. (2005) Concentration and Detection of SARS Coronavirus in Sewage from Xiao Tang Shan Hospital and the 309th Hospital of the Chinese People’s Liberation Army. Water Science & Technology, 52, 213-221. https://doi.org/10.2166/wst.2005.0266
[63]  Ghernaout, D., Naceur, M.W. and Aouabed, A. (2011) On the Dependence of Chlorine By-Products Generated Species Formation of the Electrode Material and Applied Charge during Electrochemical Water Treatment. Desalination, 270, 9-22. https://doi.org/10.1016/j.desal.2011.01.010
[64]  Ghernaout, D. and Elboughdiri, N. (2020) Is Not It Time to Stop Using Chlorine for Treating Water? Open Access Library Journal, 7, e6007.
[65]  Ghernaout, D., Moulay, S., Ait Messaoudene, N., Aichouni, M., Naceur, M.W. and Boucherit, A. (2014) Coagulation and Chlorination of NOM and Algae in Water Treatment: A Review. International Journal of Environmental Monitoring and Analysis, 2, 23-34. https://doi.org/10.11648/j.ijema.s.2014020601.14
[66]  Ghernaout, D. (2017) Water Treatment Chlorination: An Updated Mechanistic Insight Review. Chemistry Research Journal, 2, 125-138.
[67]  Ghernaout, D., Alghamdi, A., Aichouni, M. and Touahmia, M. (2018) The Lethal Water Tri-Therapy: Chlorine, Alum, and Polyelectrolyte. World Journal of Applied Chemistry, 3, 65-71. https://doi.org/10.11648/j.wjac.20180302.14
[68]  Ghernaout, D. and Elboughdiri, N. (2020) Foresight Look on the Disinfection By-Products Formation. Open Access Library Journal, 7, e6349.
[69]  Gundy, P.M., Gerba, C.P. and Pepper, I.L. (2009) Survival of Coronaviruses in Water and Wastewater. Food and Environmental Virology, 1, 10-14. https://doi.org/10.1007/s12560-008-9001-6
[70]  Casanova, L., Rutala, W.A., Weber, D.J. and Sobsey, M.D. (2009) Survival of Surrogate Coronaviruses in Water. Water Research, 43, 1893-1898. https://doi.org/10.1016/j.watres.2009.02.002
[71]  Ghernaout, D. and Elboughdiri, N. (2020) Solar Treatment in the Core of the New Disinfection Technologies. Chemical Science & Engineering Research, 2, 6-11.
[72]  Ghernaout, D., Alghamdi, A., Touahmia, M., Aichouni, M. and Ait Messaoudene, N. (2018) Nanotechnology Phenomena in the Light of the Solar Energy. Journal of Energy, Environmental & Chemical Engineering, 3, 1-8. https://doi.org/10.11648/j.jeece.20180301.11
[73]  Al Arni, S., Amous, J. and Ghernaout, D. (2019) On the Perspective of Applying of a New Method for Wastewater Treatment Technology: Modification of the Third Traditional Stage with Two Units, One by Cultivating Microalgae and Another by Solar Vaporization. International Journal of Environmental Sciences & Natural Resources, 16, Article ID: 555934. https://doi.org/10.19080/IJESNR.2019.16.555934
[74]  Ghernaout, D., Aichouni, M. and Touahmia, M. (2019) Mechanistic Insight into Disinfection by Electrocoagulation—A Review. Desalination and Water Treatment, 141, 68-81. https://doi.org/10.5004/dwt.2019.23457
[75]  Ghernaout, D. (2019) Greening Electrocoagulation Process for Disinfecting Water. Applied Engineering, 3, 27-31.
[76]  Ghernaout, D. (2019) Electrocoagulation and Electrooxidation for Disinfecting Water: New Breakthroughs and Implied Mechanisms. Applied Engineering, 3, 125-133.
[77]  Ghernaout, D. and Naceur, M.W. (2011) Ferrate(VI): In Situ Generation and Water Treatment—A Review. Desalination and Water Treatment, 30, 319-332. https://doi.org/10.5004/dwt.2011.2217
[78]  Ghernaout, D. (2018) Magnetic Field Generation in the Water Treatment Perspectives: An Overview. International Journal of Advances in Applied Sciences, 5, 193-203. https://doi.org/10.21833/ijaas.2018.01.025
[79]  Ghernaout, D., Aichouni, M. and Alghamdi, A. (2018) Applying Big Data (BD) in Water Treatment Industry: A New Era of Advance. International Journal of Advances in Applied Sciences, 5, 89-97. https://doi.org/10.21833/ijaas.2018.03.013
[80]  Ghernaout, D. and El-Wakil, A. (2017) Requiring Reverse Osmosis Membranes Modifications—An Overview. American Journal of Chemical Engineering, 5, 81-88. https://doi.org/10.11648/j.ajche.20170504.15
[81]  Ghernaout, D. (2017) Reverse Osmosis Process Membranes Modeling—A Historical Overview. Journal of Civil, Construction and Environmental Engineering, 2, 112-122.
[82]  Ghernaout, D., El-Wakil, A., Alghamdi, A., Elboughdiri, N. and Mahjoubi, A. (2018) Membrane Post-Synthesis Modifications and How It Came about. International Journal of Advances in Applied Sciences, 5, 60-64. https://doi.org/10.21833/ijaas.2018.02.010
[83]  Ghernaout, D., Simoussa, A., Alghamdi, A., Ghernaout, B., Elboughdiri, N., Mahjoubi, A., Aichouni, M. and El-Wakil, A.E.A. (2018) Combining Lime Softening with Alum Coagulation for Hard Ghrib Dam Water Conventional Treatment. International Journal of Advances in Applied Sciences, 5, 61-70. https://doi.org/10.21833/ijaas.2018.05.008
[84]  Djezzar, S., Ghernaout, D., Cherifi, H., Alghamdi, A., Ghernaout, B. and Aichouni, M. (2018) Conventional, Enhanced, and Alkaline Coagulation for Hard Ghrib Dam (Algeria) Water. World Journal of Applied Chemistry, 3, 41-55. https://doi.org/10.11648/j.wjac.20180302.12
[85]  Ghernaout, D., Ghernaout, B. and Kellil, A. (2009) Natural Organic Matter Removal and Enhanced Coagulation as a Link between Coagulation and Electrocoagulation. Desalination and Water Treatment, 2, 203-222. https://doi.org/10.5004/dwt.2009.116
[86]  Boucherit, A., Moulay, S., Ghernaout, D., Al-Ghonamy, A.I., Ghernaout, B., Naceur, M.W., Ait Messaoudene, N., Aichouni, M., Mahjoubi, A.A. and Elboughdiri, N.A. (2015) New Trends in Disinfection By-Products Formation upon Water Treatment. Journal of Research & Developments in Chemistry, 2015, Article ID: 628833. https://doi.org/10.5171/2015.628833
[87]  Ghernaout, D. (2018) Disinfection and DBPs Removal in Drinking Water Treatment: A Perspective for a Green Technology. International Journal of Advances in Applied Sciences, 5, 108-117. https://doi.org/10.21833/ijaas.2018.02.018
[88]  Ghernaout, D., Touahmia, M. and Aichouni, M. (2019) Disinfecting Water: Electrocoagulation as an Efficient Process. Applied Engineering, 3, 1-12.
[89]  Ghernaout, D. and Elboughdiri, N. (2020) Vacuum-UV Radiation at 185 nm for Disinfecting Water. Chemical Science & Engineering Research, 2, 12-17.
[90]  Ghernaout, D. and Elboughdiri, N. (2020) UV-C/H2O2 and Sunlight/H2O2 in the Core of the Best Available Technologies for Dealing with Present Dares in Domestic Wastewater Reuse. Open Access Library Journal, 7, e6161. https://doi.org/10.4236/oalib.1106161
[91]  Ghernaout, D. and Elboughdiri, N. (2020) Towards Enhancing Ozone Diffusion for Water Disinfection—Short Notes. Open Access Library Journal, 7, e6253.

Full-Text


comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413