All Title Author
Keywords Abstract


On the Other Side of Viruses in the Background of Water Disinfection

DOI: 10.4236/oalib.1106374, PP. 1-29

Subject Areas: Public Health, Chemical Engineering & Technology

Keywords: Viruses, Disinfection, Virology, Thermal Inactivation, Chlorination, Ozone

Full-Text   Cite this paper   Add to My Lib

Abstract

At COVID-19 time, as surface water and urban wastewater will constantly carry microbial pathogens, pathogens should be eliminated at least to degrees that do not have an effect on public health. Among the pathogen groups observed in water, viruses constitute the biggest danger since they frequently appear in much bigger levels and possess much greater infectivity than bacteria and parasitic protozoa. This work highlights the viruses especially in terms of composition and behavior in ecosystems and discusses the main disinfection techniques, especially thermal demobilization, chlorination and ozonation, and their involved mechanisms. Precise estimates of viral demobilization and log removal throughout water treatment techniques stay crucial for evaluating danger to human health, developing regulations, and informing engineering design of full-scale treatment plants. Practical demobilization details developed at bench-scale for human pathogens like norovirus and COVID-19 will be vital. The more we study the composition of viruses and their fate in ecosystems, and the more we try the techniques for their disposal in water treatment plants, the more we realize that it is difficult to get rid of them using a single treatment method. Employing advanced water treatment trains (such as coagulation, reverse osmosis, ultrafiltration, advanced oxidation) was proposed to guarantee removals of viruses to differing degrees of regulatory control following the degrees of human subjection and related health hazards.

Cite this paper

Ghernaout, D. and Elboughdiri, N. (2020). On the Other Side of Viruses in the Background of Water Disinfection. Open Access Library Journal, 7, e6374. doi: http://dx.doi.org/10.4236/oalib.1106374.

References

[1]  Strauss, J.H. and Strauss, E.G. (2008) Viruses and Human Disease. 2nd Edition, Elsevier, Amsterdam.
[2]  Ghernaout, D. and Elboughdiri, N. (2020) Antibiotics Resistance in Water Mediums: Background, Facts, and Trends. Applied Engineering, 4, 1-6. https://doi.org/10.4236/oalib.1106003
[3]  Ghernaout, D. and Elboughdiri, N. (2020) Removing Antibiotic-Resistant Bacteria (ARB) Carrying Genes (ARGs): Challenges and Future Trends. Open Access Library Journal, 7, e6003. https://doi.org/10.4236/oalib.1106003
[4]  Ghernaout, D. and Elboughdiri, N. (2020) Should We Forbid the Consumption of Antibiotics to Stop the Spread of Resistances in Nature? Open Access Library Journal, 7, e6138.
[5]  Gerba, C.P. (2015) Disinfection (Ch. 29). In: Pepper, I.L., Gerba, C.P. and Gentry, T.J., Eds., Environmental Microbiology, 3rd Edition, Academic Press, Elsevier Inc., Amsterdam. https://doi.org/10.1016/B978-0-12-394626-3.00001-6
[6]  Ghernaout, D. (2019) Virus Removal by Electrocoagulation and Electrooxidation: New Findings and Future Trends. Journal of Environmental Science and Allied Research, 85-90.
[7]  Ghernaout, D. and Ghernaout, B. (2010) From Chemical Disinfection to Electrodisinfection: The Obligatory Itinerary? Desalination and Water Treatment, 16, 156-175. https://doi.org/10.5004/dwt.2010.1085
[8]  Ghernaout, D., Benblidia, C. and Khemici, F. (2015) Microalgae Removal from Ghrib Dam (Ain Defla, Algeria) Water by Electroflotation Using Stainless Steel Electrodes. Desalination and Water Treatment, 54, 3328-3337. https://doi.org/10.1080/19443994.2014.907749
[9]  Kellali, Y. and Ghernaout, D. (2019) Physicochemical and Algal Study of Three Dams (Algeria) and Removal of Microalgae by Enhanced Coagulation. Applied Engineering, 3, 56-64.
[10]  Ghernaout, D. (2019) Electrocoagulation Process for Microalgal Biotechnology—A Review. Applied Engineering, 3, 85-94.
[11]  Ghernaout, D. and Elboughdiri, N. (2020) UV-C/H2O2 and Sunlight/H2O2 in the Core of the Best Available Technologies for Dealing with Present Dares in Domestic Wastewater Reuse. Open Access Library Journal, 7, e6161. https://doi.org/10.4236/oalib.1106161
[12]  Ghernaout, D. (2013) Advanced Oxidation Phenomena in Electrocoagulation Process: A Myth or a Reality? Desalination and Water Treatment, 51, 7536-7554. https://doi.org/10.1080/19443994.2013.792520
[13]  Ghernaout, D. and Elboughdiri, N. (2020) Advanced Oxidation Processes for Wastewater Treatment: Facts and Future Trends. Open Access Library Journal, 7, e6139.
[14]  Block, S.S. (1991) Disinfection, Sterilization, and Preservation. 4th Edition, Lea & Febiger, Philadelphia.
[15]  Ghernaout, D., Badis, A., Ghernaout, B. and Kellil, A. (2008) Application of Electrocoagulation in Escherichia coli Culture and Two Surface Waters. Desalination, 219, 118-125. https://doi.org/10.1016/j.desal.2007.05.010
[16]  Ghernaout, D., Badis, A., Braikia, G., Mataam, N., Fekhar, M., Ghernaout, B. and Boucherit, A. (2017) Enhanced Coagulation for Algae Removal in a Typical Algeria Water Treatment Plant. Environmental Engineering and Management Journal, 16, 2303-2315. https://doi.org/10.30638/eemj.2017.238
[17]  Belhout, D., Ghernaout, D., Djezzar-Douakh, S. and Kellil, A. (2010) Electrocoagulation of a Raw Water of Ghrib Dam (Algeria) in Batch Using Iron Electrodes. Desalination and Water Treatment, 16, 1-9. https://doi.org/10.5004/dwt.2010.1081
[18]  Ghernaout, D. (2018) Electrocoagulation Process: Achievements and Green Perspectives. Colloid and Surface Science, 3, 1-5. https://doi.org/10.11648/j.css.20180301.11
[19]  Ghernaout, D., Ghernaout, B. and Naceur, M.W. (2011) Embodying the Chemical Water Treatment in the Green Chemistry—A Review. Desalination, 271, 1-10. https://doi.org/10.1016/j.desal.2011.01.032
[20]  Ghernaout, D. (2013) The Best Available Technology of Water/Wastewater Treatment and Seawater Desalination: Simulation of the Open Sky Seawater Distillation. Green and Sustainable Chemistry, 3, 68-88. https://doi.org/10.4236/gsc.2013.32012
[21]  Ghernaout, D. (2017) Environmental Principles in the Holy Koran and the Sayings of the Prophet Muhammad. American Journal of Environmental Protection, 6, 75-79. https://doi.org/10.11648/j.ajep.20170603.13
[22]  Ghernaout, D. (2018) Magnetic Field Generation in the Water Treatment Perspectives: An Overview. International Journal of Advances in Applied Sciences, 5, 193-203. https://doi.org/10.21833/ijaas.2018.01.025
[23]  Jay, J.M. (1996) Modern Food Microbiology. 5th Edition, Chapman & Hall, New York. https://doi.org/10.1007/978-1-4615-7473-6
[24]  Eterpi, M., McDonnell, G. and Thomas, V. (2009) Disinfection against Parvoviruses. Journal of Hospital Infection, 73, 64-70. https://doi.org/10.1016/j.jhin.2009.05.016
[25]  Liew, P. and Gerba, C.P. (1980) Thermo-Stabilization of Enteroviruses on Estuarine Sediment. Applied and Environmental Microbiology, 40, 305-308. https://doi.org/10.1128/AEM.40.2.305-308.1980
[26]  Montgomery, J.M. (1988) Water Treatment and Design. John Wiley & Sons, New York.
[27]  Ghernaout, D. (2017) Microorganisms’ Electrochemical Disinfection Phenomena. EC Microbiology, 9, 160-169.
[28]  Ghernaout, D., Touahmia, M. and Aichouni, M. (2019) Disinfecting Water: Electrocoagulation as an Efficient Process. Applied Engineering, 3, 1-12.
[29]  Ghernaout, D., Aichouni, M. and Touahmia, M. (2019) Mechanistic Insight into Disinfection by Electrocoagulation—A Review. Desalination and Water Treatment, 141, 68-81. https://doi.org/10.5004/dwt.2019.23457
[30]  Ghernaout, D., Alghamdi, A. and Ghernaout, B. (2019) Microorganisms’ Killing: Chemical Disinfection vs. Electrodisinfection. Applied Engineering, 3, 13-19.
[31]  Ghernaout, D. (2019) Greening Electrocoagulation Process for Disinfecting Water. Applied Engineering, 3, 27-31.
[32]  Ghernaout, D. (2019) Electrocoagulation and Electrooxidation for Disinfecting Water: New Breakthroughs and Implied Mechanisms. Applied Engineering, 3, 125-133.
[33]  Stewart, M.W. and Olson, B.H. (1996) Bacterial Resistance to Potable Water Disinfectants. In: Modeling Disease Transmission and Its Prevention by Disinfection, Cambridge University Press, Cambridge, UK, 140-192.
[34]  Ghernaout, D. and Elboughdiri, N. (2019) Electrocoagulation Process Intensification for Disinfecting Water—A Review. Applied Engineering, 3, 140-147.
[35]  Ghernaout, D. and Elboughdiri, N. (2019) Iron Electrocoagulation Process for Disinfecting Water—A Review. Applied Engineering, 3, 154-158.
[36]  Ghernaout, D. (2019) Disinfection via Electrocoagulation Process: Implied Mechanisms and Future Tendencies. EC Microbiology, 15, 79-90.
[37]  Ghernaout, D. and Elboughdiri, N. (2019) Mechanistic Insight into Disinfection Using Ferrate(VI). Open Access Library Journal, 6, e5946.
[38]  Ghernaout, D. and Elboughdiri, N. (2019) Water Disinfection: Ferrate(VI) as the Greenest Chemical—A Review. Applied Engineering, 3, 171-180.
[39]  Ghernaout, D. and Elboughdiri, N. (2020) Electrocoagulation Process in the Context of Disinfection Mechanism. Open Access Library Journal, 7, e6083.
[40]  Ghernaout, D., Elboughdiri, N., Ghareba, S. and Salih, A. (2020) Electrochemical Advanced Oxidation Processes (EAOPs) for Disinfecting Water—Fresh Perspectives. Open Access Library Journal, 7, e6257. https://doi.org/10.4236/oalib.1106257
[41]  Ghernaout, D., Elboughdiri, N., Ghareba, S. and Salih, A. (2020) Disinfecting Water with the Carbon Fiber-Based Flow-Through Electrode System (FES): Towards Axial Dispersion and Velocity Profile. Open Access Library Journal, 7, e6238. https://doi.org/10.4236/oalib.1106238
[42]  Ghernaout, D., Ghernaout, B. and Boucherit, A. (2008) Effect of pH on Electrocoagulation of Bentonite Suspensions in Batch Using Iron Electrodes. Journal of Dispersion Science and Technology, 29, 1272-1275. https://doi.org/10.1080/01932690701857483
[43]  Ghernaout, D. and Elboughdiri, N. (2020) Magnetic Field Application: An Underappreciated Outstanding Technology. Open Access Library Journal, 7, e6000.
[44]  Ghernaout, D., Elboughdiri, N. and Alghamdi, A. (2019) Direct Potable Reuse: The Singapore NEWater Project as a Role Model. Open Access Library Journal, 6, e5980. https://doi.org/10.4236/oalib.1105980
[45]  Ghernaout, D. and Elboughdiri, N. (2020) Electrochemical Technology for Wastewater Treatment: Dares and Trends. Open Access Library Journal, 7, e6020.
[46]  Ghernaout, D., Elboughdiri, N. and Ghareba, S. (2020) Fenton Technology for Wastewater Treatment: Dares and Trends. Open Access Library Journal, 7, e6045. https://doi.org/10.4236/oalib.1106045
[47]  Ghernaout, D. and Elboughdiri, N. (2020) On the Treatment Trains for Municipal Wastewater Reuse for Irrigation. Open Access Library Journal, 7, e6088.
[48]  Ghernaout, D. and Elboughdiri, N. (2020) Domestic Wastewater Treatment: Difficulties and Reasons, and Prospective Solutions—China as an Example. Open Access Library Journal, 7, e6141.
[49]  Ghernaout, D. and Elboughdiri, N. (2019) Water Reuse: Emerging Contaminants Elimination—Progress and Trends. Open Access Library Journal, 6, e5981.
[50]  Ghernaout, D., Ghernaout, B., Saiba, A., Boucherit, A. and Kellil, A. (2009) Removal of Humic Acids by Continuous Electromagnetic Treatment Followed by Electrocoagulation in Batch Using Aluminium Electrodes. Desalination, 239, 295-308. https://doi.org/10.1016/j.desal.2008.04.001
[51]  Ghernaout, D., Ghernaout, B., Boucherit, A., Naceur, M.W., Khelifa, A. and Kellil, A. (2009) Study on Mechanism of Electrocoagulation with Iron Electrodes in Idealised Conditions and Electrocoagulation of Humic Acids Solution in Batch Using Aluminium Electrodes. Desalination and Water Treatment, 8, 91-99. https://doi.org/10.5004/dwt.2009.668
[52]  Saiba, A., Kourdali, S., Ghernaout, B. and Ghernaout, D. (2010) In Desalination, from 1987 to 2009, the Birth of a New Seawater Pretreatment Process: Electrocoagulation—An Overview. Desalination and Water Treatment, 16, 201-217. https://doi.org/10.5004/dwt.2010.1094
[53]  Bates, R.C., Shaffer, P.T.B. and Sutherland, S.M. (1977) Development of Poliovirus Having Increased Resistance to Chlorine Inactivation. Applied and Environmental Microbiology, 33, 849-853. https://doi.org/10.1128/AEM.34.6.849-853.1977
[54]  Haas, C.N. and Morrison, E.C. (1981) Repeated Exposure of Escherichia coli to Free Chlorine: Production of Strains Possessing Altered Sensitivity. Water, Air, & Soil Pollution, 16, 233-242. https://doi.org/10.1007/BF01046857
[55]  Ghernaout, B., Ghernaout, D. and Saiba, A. (2010) Algae and Cyanotoxins Removal by Coagulation/Flocculation: A Review. Desalination and Water Treatment, 20, 133-143. https://doi.org/10.5004/dwt.2010.1202
[56]  Ghernaout, D., Mariche, A., Ghernaout, B. and Kellil, A. (2010) Electromagnetic Treatment-Bi-Electrocoagulation of Humic Acid in Continuous Mode Using Response Surface Method for Its Optimization and Application on Two Surface Waters. Desalination and Water Treatment, 22, 311-329. https://doi.org/10.5004/dwt.2010.1120
[57]  Ghernaout, D. and Naceur, M.W. (2011) Ferrate(VI): In Situ Generation and Water Treatment—A Review. Desalination and Water Treatment, 30, 319-332. https://doi.org/10.5004/dwt.2011.2217
[58]  Ghernaout, D. and Ghernaout, B. (2012) Sweep Flocculation as a Second Form of Charge Neutralisation—A Review. Desalination and Water Treatment, 44, 15-28. https://doi.org/10.1080/19443994.2012.691699
[59]  Ghernaout, D. and Ghernaout, B. (2012) On the Concept of the Future Drinking Water Treatment Plant: Algae Harvesting from the Algal Biomass for Biodiesel Production—A Review. Desalination and Water Treatment, 49, 1-18. https://doi.org/10.1080/19443994.2012.708191
[60]  Ghernaout, D., Al-Ghonamy, A.I., Naceur, M.W., Ait Messaoudene, N. and Aichouni, M. (2014) Influence of Operating Parameters on Electrocoagulation of C.I. Disperse Yellow 3. Journal of Electrochemical Science and Engineering, 4, 271-283. https://doi.org/10.5599/jese.2014.0065
[61]  Ghernaout, D., Al-Ghonamy, A.I., Irki, S., Grini, A., Naceur, M.W., Ait Messaoudene, N. and Aichouni, M. (2014) Decolourization of Bromophenol Blue by Electrocoagulation Process. Trends in Chemical Engineering, 15, 29-39.
[62]  Ghernaout, D. (2017) Water Reuse (WR): The Ultimate and Vital Solution for Water Supply Issues. International Journal of Sustainable Development Research, 3, 36-46. https://doi.org/10.11648/j.ijsdr.20170304.12
[63]  Ghernaout, D., Aichouni, M. and Alghamdi, A. (2018) Applying Big Data (BD) in Water Treatment Industry: A New Era of Advance. International Journal of Advances in Applied Sciences, 5, 89-97. https://doi.org/10.21833/ijaas.2018.03.013
[64]  Djezzar, S., Ghernaout, D., Cherifi, H., Alghamdi, A., Ghernaout, B. and Aichouni, M. (2018) Conventional, Enhanced, and Alkaline Coagulation for Hard Ghrib Dam (Algeria) Water. World Journal of Applied Chemistry, 3, 41-55. https://doi.org/10.11648/j.wjac.20180302.12
[65]  Ghernaout, D., Elboughdiri, N. and Al Arni, S. (2019) Water Reuse (WR): Dares, Restrictions, and Trends. Applied Engineering, 3, 159-170.
[66]  Ghernaout, D., Elboughdiri, N. and Ghareba, S. (2019) Drinking Water Reuse: One-Step Closer to Overpassing the “Yuck Factor”. Open Access Library Journal, 6, e5895. https://doi.org/10.4236/oalib.1105895
[67]  Bitton, G. (2011) Wastewater Microbiology. 4th Edition, Wiley-Liss, New York. https://doi.org/10.1002/9780470901243
[68]  Ghernaout, D. (2018) Increasing Trends towards Drinking Water Reclamation from Treated Wastewater. World Journal of Applied Chemistry, 3, 1-9. https://doi.org/10.11648/j.wjac.20180301.11
[69]  Ghernaout, D., Alshammari, Y. and Alghamdi, A. (2018) Improving Energetically Operational Procedures in Wastewater Treatment Plants. International Journal of Advances in Applied Sciences, 5, 64-72. https://doi.org/10.21833/ijaas.2018.09.010
[70]  Al Arni, S., Amous, J. and Ghernaout, D. (2019) On the Perspective of Applying of a New Method for Wastewater Treatment Technology: Modification of the Third Traditional Stage with Two Units, One by Cultivating Microalgae and Another by Solar Vaporization. International Journal of Environmental Sciences & Natural Resources, 16, 555934. https://doi.org/10.19080/IJESNR.2019.16.555934
[71]  Ghernaout, D. (2019) Reviviscence of Biological Wastewater Treatment—A Review. Applied Engineering, 3, 46-55.
[72]  Ghernaout, D. and Elboughdiri, N. (2019) Upgrading Wastewater Treatment Plant to Obtain Drinking Water. Open Access Library Journal, 6, e5959. https://doi.org/10.4236/oalib.1105959
[73]  Alvarez, M.E. and O’Brien, R.T. (1982) Effects of Chlorine Concentration on the Structure of Poliovirus. Applied and Environmental Microbiology, 43, 237-239. https://doi.org/10.1128/AEM.43.1.237-239.1982
[74]  Vaughn, J.M. and Novotny, J.F. (1991) Virus Inactivation by Disinfectants. In: Hurst, C.J., Ed., Modeling the Environmental Fate of Microorganisms, American Society for Microbiology, Washington, DC, 217-241.
[75]  Wigginton, K.R., Pecson, B.M., Sigstam, T., Bosshard, F. and Kohn, T. (2012) Virus Inactivation Mechanisms: Impact of Disinfectants on Virus Function and Structural Integrity. Environmental Science & Technology, 46, 12069-12078. https://doi.org/10.1021/es3029473
[76]  Ghernaout, D. and Elboughdiri, N. (2020) Towards Enhancing Ozone Diffusion for Water Disinfection—Short Notes. Open Access Library Journal, 7, e6253. https://doi.org/10.4236/oalib.1106253
[77]  Boucherit, A., Moulay, S., Ghernaout, D., Al-Ghonamy, A.I., Ghernaout, B., Naceur, M.W., Ait Messaoudene, N., Aichouni, M., Mahjoubi, A.A. and Elboughdiri, N.A. (2015) New Trends in Disinfection By-Products Formation upon Water Treatment. Journal of Research & Developments in Chemistry, 2015, Article ID 628833. https://doi.org/10.5171/2015.628833
[78]  Ghernaout, D., Naceur, M.W. and Aouabed, A. (2011) On the Dependence of Chlorine By-Products Generated Species Formation of the Electrode Material and Applied Charge during Electrochemical Water Treatment. Desalination, 270, 9-22. https://doi.org/10.1016/j.desal.2011.01.010
[79]  Ghernaout, D. (2018) Disinfection and DBPs Removal in Drinking Water Treatment: A Perspective for a Green Technology. International Journal of Advances in Applied Sciences, 5, 108-117. https://doi.org/10.21833/ijaas.2018.02.018
[80]  Ghernaout, D. and Elboughdiri, N. (2020) Strategies for Reducing Disinfection By-Products Formation during Electrocoagulation. Open Access Library Journal, 7, e6076. https://doi.org/10.4236/oalib.1106076
[81]  Ghernaout, D. and Elboughdiri, N. (2020) Disinfection By-Products: Presence and Elimination in Drinking Water. Open Access Library Journal, 7, e6140.
[82]  Ghernaout, D. and Elboughdiri, N. (2020) Controlling Disinfection By-Products formation in Rainwater: Technologies and Trends. Open Access Library Journal, 7, e6162. https://doi.org/10.4236/oalib.1106162
[83]  Ghernaout, D. and Elboughdiri, N. (2020) Eliminating Cyanobacteria and Controlling Algal Organic Matter—Short Notes. Open Access Library Journal, 7, e6252. https://doi.org/10.4236/oalib.1106252
[84]  Ghernaout, D., Elboughdiri, N., Ghareba, S. and Salih, A. (2020) Coagulation Process for Removing Algae and Algal Organic Matter—An Overview. Open Access Library Journal, 7, e6272. https://doi.org/10.4236/oalib.1106272
[85]  Ghernaout, D., Ghernaout, B. and Kellil, A. (2009) Natural Organic Matter Removal and Enhanced Coagulation as a Link between Coagulation and Electrocoagulation. Desalination and Water Treatment, 2, 203-222. https://doi.org/10.5004/dwt.2009.116
[86]  Ghernaout, D., Naceur, M.W. and Ghernaout, B. (2011) A review of Electrocoagulation as a Promising Coagulation Process for Improved Organic and Inorganic Matters Removal by Electrophoresis and Electroflotation. Desalination and Water Treatment, 28, 287-320. https://doi.org/10.5004/dwt.2011.1493
[87]  Ghernaout, D. (2014) The Hydrophilic/Hydrophobic Ratio vs. Dissolved Organics Removal by Coagulation—A Review. Journal of King Saud University—Science, 26, 169-180. https://doi.org/10.1016/j.jksus.2013.09.005
[88]  Choi, M., Kim, J., Kim, J.Y., Yoon, J. and Kim, J.H. (2010) Mechanisms of Escherichia coli Inactivation by Several Disinfectants. Water Research, 44, 3410-3418. https://doi.org/10.1016/j.watres.2010.03.017
[89]  Ran, Z., Li, S., Huang, J., Yuan, Y., Cui, C. and Williams, C.D. (2010) Inactivation of Cryptosporidium by Ozone and Cell Ultrastructures. Journal of Environmental Sciences (China), 22, 1954-1959. https://doi.org/10.1016/S1001-0742(09)60345-4
[90]  Gerba, C.P., Betancourt, W.Q., Kitajima, M. and Rock, C.M. (2018) Reducing Uncertainty in Estimating Virus Reduction by Advanced Water Treatment Processes. Water Research, 133, 282-288. https://doi.org/10.1016/j.watres.2018.01.044
[91]  Ghernaout, D. (2017) Entropy in the Brownian Motion (BM) and Coagulation Background. Colloid and Surface Science, 2, 143-161.
[92]  Ghernaout, D., Simoussa, A., Alghamdi, A., Ghernaout, B., Elboughdiri, N., Mahjoubi, A., Aichouni, M. and El-Wakil, A.E.A. (2018) Combining Lime Softening with Alum Coagulation for Hard Ghrib Dam Water Conventional Treatment. International Journal of Advances in Applied Sciences, 5, 61-70. https://doi.org/10.21833/ijaas.2018.05.008
[93]  Ghernaout, D., Al-Ghonamy, A.I., Boucherit, A., Ghernaout, B., Naceur, M.W., Ait Messaoudene, N., Aichouni, M., Mahjoubi, A.A. and Elboughdiri, N.A. (2015) Brownian Motion and Coagulation Process. American Journal of Environmental Protection, 4, 1-15. https://doi.org/10.11648/j.ajeps.s.2015040501.11
[94]  Ghernaout, D., Al-Ghonamy, A.I., Naceur, M.W., Boucherit, A., Messaoudene, N.A., Aichouni, M., Mahjoubi, A.A. and Elboughdiri, N.A. (2015) Controlling Coagulation Process: From Zeta Potential to Streaming Potential. American Journal of Environmental Protection, 4, 16-27. https://doi.org/10.11648/j.ajeps.s.2015040501.12
[95]  Ghernaout, D. and El-Wakil, A. (2017) Requiring Reverse Osmosis Membranes Modifications—An Overview. American Journal of Chemical Engineering, 5, 81-88. https://doi.org/10.11648/j.ajche.20170504.15
[96]  Ghernaout, D. (2017) Reverse Osmosis Process Membranes Modeling—A Historical Overview. Journal of Civil, Construction and Environmental Engineering, 2, 112-122.
[97]  Ghernaout, D., Alshammari, Y., Alghamdi, A., Aichouni, M., Touahmia, M. and Ait Messaoudene, N. (2018) Water Reuse: Extenuating Membrane Fouling in Membrane Processes. International Journal of Environmental Chemistry, 2, 1-12. https://doi.org/10.11648/j.ajche.20180602.12
[98]  Ait Messaoudene, N., Naceur, M.W., Ghernaout, D., Alghamdi, A. and Aichouni, M. (2018) On the Validation Perspectives of the Proposed Novel Dimensionless Fouling Index. International Journal of Advances in Applied Sciences, 5, 116-122. https://doi.org/10.21833/ijaas.2018.07.014
[99]  Ghernaout, D., El-Wakil, A., Alghamdi, A., Elboughdiri, N. and Mahjoubi, A. (2018) Membrane Post-Synthesis Modifications and How It Came about. International Journal of Advances in Applied Sciences, 5, 60-64. https://doi.org/10.21833/ijaas.2018.02.010
[100]  Ghernaout, D. (2019) Brine Recycling: Towards Membrane Processes as the Best Available Technology. Applied Engineering, 3, 71-84.
[101]  Guerrero-Latorre, L., Gonzales-Gustavson, E., Hundesa, A., Sommer, R. and Rosina, G. (2016) UV Disinfection and Flocculation-Chlorination Sachets to Reduce Hepatitis E Virus in Drinking Water. International Journal of Hygiene and Environmental Health, 219, 405-411. https://doi.org/10.1016/j.ijheh.2016.04.002
[102]  Schijven, J., Teunis, P., Suylen, T., Ketelaars, H., Hornstra, L. and Rutjes, S. (2019) QMRA of Adenovirus in Drinking Water at a Drinking Water Treatment Plant Using UV and Chlorine Dioxide Disinfection. Water Research, 158, 34-45. https://doi.org/10.1016/j.watres.2019.03.090
[103]  Dunkin, N., Weng, S.C., Coulter, C.G., Jacangelo, J.G. and Schwab, K.J. (2018) Impacts of Virus Processing on Human Norovirus GI and GII Persistence during Disinfection of Municipal Secondary Wastewater Effluent. Water Research, 134, 1-12. https://doi.org/10.1016/j.watres.2018.01.053
[104]  Zhang, H., Zheng, L., Li, Z., Pi, K. and Deng, Y. (2020) One-Step Ferrate(VI) Treatment as a Core Process for Alternative Drinking Water Treatment. Chemosphere, 242, 125134. https://doi.org/10.1016/j.chemosphere.2019.125134
[105]  Ghernaout, D. and Boucherit, A. (2015) Review of Coagulation’s Rapid Mixing for NOM Removal. Journal of Research & Developments in Chemistry, 2015, Article ID: 926518. https://doi.org/10.5171/2015.926518
[106]  Ghernaout, D. (2017) The Holy Koran Revelation: Iron Is a “Sent Down” Metal. American Journal of Environmental Protection, 6, 101-104. https://doi.org/10.11648/j.ajep.20170604.14
[107]  Ghernaout, D., Irki, S. and Boucherit, A. (2014) Removal of Cu2 and Cd2 , and Humic Acid and Phenol by Electrocoagulation Using Iron Electrodes. Desalination and Water Treatment, 52, 3256-3270. https://doi.org/10.1080/19443994.2013.852484
[108]  Irki, S., Ghernaout, D. and Naceur, M.W. (2017) Decolourization of Methyl Orange (MO) by Electrocoagulation (EC) Using Iron Electrodes under a Magnetic Field (MF). Desalination and Water Treatment, 79, 368-377. https://doi.org/10.5004/dwt.2017.20797
[109]  Irki, S., Ghernaout, D., Naceur, M.W., Alghamdi, A. and Aichouni, M. (2018) Decolorization of Methyl Orange (MO) by Electrocoagulation (EC) Using Iron Electrodes under a Magnetic Field (MF). II. Effect of Connection Mode. World Journal of Applied Chemistry, 3, 56-64. https://doi.org/10.11648/j.wjac.20180302.13
[110]  Heffron, J., McDermid, B., Maher, E., McNamara, P.J. and Mayer, B.K. (2019) Mechanisms of Virus Mitigation and Suitability of Bacteriophages as Surrogates in Drinking Water Treatment by Iron Electrocoagulation. Water Research, 163, 114877. https://doi.org/10.1016/j.watres.2019.114877

Full-Text


comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

微信:OALib Journal