全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

Trends in Decreasing Disinfection By-Products Formation during Electrochemical Technologies

DOI: 10.4236/oalib.1106337, PP. 1-17

Subject Areas: Chemical Engineering & Technology

Keywords: Disinfection, Disinfection By-Products (DBPs), Organic Matter (OM), Hydroxyl Radical, Electroperoxone (E-Peroxone), Nanotechnologies

Full-Text   Cite this paper   Add to My Lib

Abstract

Disinfecting water and wastewater electrochemically is a cost-effective and environmentally friendly alternative for the chemical disinfection. During electrochemical disinfection, the water is passed through an electrolytic cell which is equipped with a set of electrodes. The effectiveness of the process depends upon cell configuration, electrode material, electrolyte composition, microorganism, water flow rate, and current density. One of the main advantages of electrodisinfection is the on-site production of disinfectants; thereby the common drawbacks of chlorination including transportation and storage of hazardous chemicals can be avoided. On the other hand, the high cell voltages due to low electrical conductivity of water and the high capital cost are the main bottlenecks for electrodisinfection. The generation of chlorinated by-products stays the main worry related to electrochemical water treatment processes. This work discusses the main tendencies in dealing with such issues. In some setups, the electrolyte separates the anode and cathode is a proton exchange membrane. This assists to reduce the formation of perchlorate and such conduct is improved in the smallest cell for which the so short contact periods between the electrodes and the water helps to avert the formation of perchlorates when working in a single-pass mode, which becomes a really remarkable point. Other strategies are examined such as developed electrochemical advanced oxidation process, the electroperoxone (E-peroxone) process, which combines ozonation with in situ electro-generation of hydrogen peroxide (H2O2) from cathodic oxygen reduction. Electrochemical processes could be merged with nanotechnologies for better efficiency in dealing with pathogens and pollutants removal. In the next future, a hybrid process combining both techniques would be suggested as a part of treatment train for treating water and wastewater.

Cite this paper

Ghernaout, D. , Elboughdiri, N. , Alghamdi, A. and Ghernaout, B. (2020). Trends in Decreasing Disinfection By-Products Formation during Electrochemical Technologies. Open Access Library Journal, 7, e6337. doi: http://dx.doi.org/10.4236/oalib.1106337.

References

[1]  Isidro, J., Brackemeyer, D., Sáez, C., Llanos, J., Lobato, J., Ca?izares, P., Matthée, T. and Rodrigo, M.A. (2020) How to Avoid the Formation of Hazardous Chlorates and Perchlorates during Electro-Disinfection with Diamond Anodes? Journal of Environmental Management, 265, Article ID: 110566. https://doi.org/10.1016/j.jenvman.2020.110566
[2]  Ghernaout, D., Naceur, M.W. and Aouabed, A. (2011) On the Dependence of Chlorine By-Products Generated Species Formation of the Electrode Material and Applied Charge during Electrochemical Water Treatment. Desalination, 270, 9-22. https://doi.org/10.1016/j.desal.2011.01.010
[3]  Ghernaout, D., Ghernaout, B. and Naceur, M.W. (2011) Embodying the Chemical Water Treatment in the Green Chemistry: A Review. Desalination, 271, 1-10. https://doi.org/10.1016/j.desal.2011.01.032
[4]  Ghernaout, D., Elboughdiri, N., Ghareba, S. and Salih, A. (2020) Electrochemical Advanced Oxidation Processes (EAOPs) for Disinfecting Water-Fresh Perspectives. Open Access Library Journal, 7, e6257. https://doi.org/10.4236/oalib.1106257
[5]  Ghernaout, D., Benblidia, C. and Khemici, F. (2015) Microalgae Removal from Ghrib Dam (Ain Defla, Algeria) Water by Electroflotation Using Stainless Steel Electrodes. Desalination and Water Treatment, 54, 3328-3337. https://doi.org/10.1080/19443994.2014.907749
[6]  Ghernaout, D., Alghamdi, A. and Ghernaout, B. (2019) Microorganisms’ Killing: Chemical Disinfection vs. Electrodisinfection. Applied Engineering, 3, 13-19.
[7]  Ghernaout, D. and Ghernaout, B. (2010) From Chemical Disinfection to Electrodisinfection: The Obligatory Itinerary? Desalination and Water Treatment, 16, 156-175. https://doi.org/10.5004/dwt.2010.1085
[8]  Ghernaout, D., Badis, A., Ghernaout, B. and Kellil, A. (2008) Application of Electrocoagulation in Escherichia coli Culture and Two Surface Waters. Desalination, 219, 118-125. https://doi.org/10.1016/j.desal.2007.05.010
[9]  Ghernaout, D. (2017) Microorganisms’ Electrochemical Disinfection Phenomena. EC Microbiology, 9, 160-169.
[10]  Ghernaout, D. (2019) Electrocoagulation Process for Microalgal Biotechnology—A Review. Applied Engineering, 3, 85-94.
[11]  Ghernaout, D. (2019) Greening Electrocoagulation Process for Disinfecting Water. Applied Engineering, 3, 27-31.
[12]  Ghernaout, D. (2019) Electrocoagulation and Electrooxidation for Disinfecting Water: New Breakthroughs and Implied Mechanisms. Applied Engineering, 3, 125-133.
[13]  Ghernaout, D. and Elboughdiri, N. (2019) Electrocoagulation Process Intensification for Disinfecting Water—A Review. Applied Engineering, 3, 140-147.
[14]  Ghernaout, D. and Elboughdiri, N. (2019) Iron Electrocoagulation Process for Disinfecting Water—A Review. Applied Engineering, 3, 154-158.
[15]  Ghernaout, D. (2019) Disinfection via Electrocoagulation Process: Implied Mechanisms and Future Tendencies. EC Microbiology, 15, 79-90.
[16]  Ghernaout, D. and Elboughdiri, N. (2019) Mechanistic Insight into Disinfection Using Ferrate(VI). Open Access Library Journal, 6, e5946. https://doi.org/10.4236/oalib.1105946
[17]  Belhout, D., Ghernaout, D., Djezzar-Douakh, S. and Kellil, A. (2010) Electrocoagulation of a Raw Water of Ghrib Dam (Algeria) in Batch Using Iron Electrodes. Desalination and Water Treatment, 16, 1-9. https://doi.org/10.5004/dwt.2010.1081
[18]  Henquin, E.R., Colli, A.N., Bergmann, M.E.H. and Bisang, J.M. (2013) Characterization of a Bipolar Parallel-Plate Electrochemical Reactor for Water Disinfection Using Low Conductivity Drinking Water. Chemical Engineering and Processing, 65, 45-52. https://doi.org/10.1016/j.cep.2012.12.007
[19]  Zanin, H., Teofilo, R.F., Peterlevitz, A.C., Oliveira, U., de Paiva, J.C., Ceragioli, H.J., Reis, E.L. and Baranauskas, V. (2013) Diamond Cylindrical Anodes for Electrochemical Treatment of Persistent Compounds in Aqueous Solution. Journal of Applied Electrochemistry, 43, 323-330. https://doi.org/10.1007/s10800-012-0491-4
[20]  Ghernaout, D. and Elboughdiri, N. (2020) Disinfection By-Products: Presence and Elimination in Drinking Water. Open Access Library Journal, 7, e6140. https://doi.org/10.4236/oalib.1106140
[21]  Ghernaout, D. and Elboughdiri, N. (2020) Electrocoagulation Process in the Context of Disinfection Mechanism. Open Access Library Journal, 7, e6083.
[22]  Ghernaout, D. and Elboughdiri, N. (2020) Strategies for Reducing Disinfection By-Products Formation during Electrocoagulation. Open Access Library Journal, 7, e6076. https://doi.org/10.4236/oalib.1106076
[23]  Ghernaout, D. and Elboughdiri, N. (2020) Electrochemical Technology for Wastewater Treatment: Dares and Trends. Open Access Library Journal, 7, e6020.
[24]  Ghernaout, D. (2018) Disinfection and DBPs Removal in Drinking Water Treatment: A Perspective for a Green Technology. International Journal of Advances in Applied Sciences, 5, 108-117. https://doi.org/10.21833/ijaas.2018.02.018
[25]  Cano, A., Barrera, C., Cotillas, S., Llanos, J., Canizares, P. and Rodrigo, M.A. (2016) Use of DiaCell Modules for the Electro-Disinfection of Secondary-Treated Wastewater with Diamond Anodes. Chemical Engineering Journal, 306, 433-440. https://doi.org/10.1016/j.cej.2016.07.090
[26]  Ghernaout, D. and Elboughdiri, N. (2019) Water Disinfection: Ferrate(VI) as the Greenest Chemical—A Review. Applied Engineering, 3, 171-180.
[27]  Ghernaout, D. (2019) Virus Removal by Electrocoagulation and Electrooxidation: New Findings and Future Trends. Journal of Environmental Science and Allied Research, 2019, 85-90. https://doi.org/10.29199/2637-7063/ESAR-202024
[28]  Ghernaout, D., Aichouni, M. and Touahmia, M. (2019) Mechanistic Insight into Disinfection by Electrocoagulation—A Review. Desalination and Water Treatment, 141, 68-81. https://doi.org/10.5004/dwt.2019.23457
[29]  Ghernaout, D., Touahmia, M. and Aichouni, M. (2019) Disinfecting Water: Electrocoagulation as an Efficient Process. Applied Engineering, 3, 1-12.
[30]  Ghernaout, D. (2018) Electrocoagulation Process: Achievements and Green Perspectives. Colloid and Surface Science, 3, 1-5. https://doi.org/10.11648/j.css.20180301.11
[31]  Ghernaout, D., Alghamdi, A., Aichouni, M. and Touahmia, M. (2018) The Lethal Water Tri-Therapy: Chlorine, Alum, and Polyelectrolyte. World Journal of Applied Chemistry, 3, 65-71. https://doi.org/10.11648/j.wjac.20180302.14
[32]  Ghernaout, D. and Elboughdiri, N. (2020) Is Not It Time to Stop Using Chlorine for Treating Water? Open Access Library Journal, 7, e6007.
[33]  Ghernaout, D., Moulay, S., Ait Messaoudene, N., Aichouni, M., Naceur, M.W. and Boucherit, A. (2014) Coagulation and Chlorination of NOM and Algae in Water Treatment: A Review. International Journal of Environmental Monitoring and Analysis, 2, 23-34. https://doi.org/10.11648/j.ijema.s.2014020601.14
[34]  Ghernaout, D. (2017) Water Treatment Chlorination: An Updated Mechanistic Insight Review. Chemistry Research Journal, 2, 125-138.
[35]  Bruguera-Casamada, C., Sires, I., Brillas, E. and Araujo, R.M. (2017) Effect of Electrogenerated Hydroxyl Radicals, Active Chlorine and Organic Matter on the Electrochemical Inactivation of Pseudomonas aeruginosa Using BDD and Dimensionally Stable Anodes. Separation and Purification Technology, 178, 224-231. https://doi.org/10.1016/j.seppur.2017.01.042
[36]  Schaefer, C.E., Andaya, C. and Urtiaga, A. (2015) Assessment of Disinfection and By-Product Formation during Electrochemical Treatment of Surface Water Using a Ti/IrO2 Anode. Chemical Engineering Journal, 264, 411-416. https://doi.org/10.1016/j.cej.2014.11.082
[37]  Li, Y., Kemper, J.M., Datuin, G., Akey, A., Mitch, W.A. and Luthy, R.G. (2016) Reductive Dehalogenation of Disinfection Byproducts by an Activated Carbon-Based Electrode System. Water Research, 98, 354-362. https://doi.org/10.1016/j.watres.2016.04.019
[38]  Ghernaout, D. and Elboughdiri, N. (2020) Controlling Disinfection By-Products Formation in Rainwater: Technologies and Trends. Open Access Library Journal, 7, e6162. https://doi.org/10.4236/oalib.1106162
[39]  Ghernaout, D. and Elboughdiri, N. (2020) Towards Enhancing Ozone Diffusion for Water Disinfection—Short Notes. Open Access Library Journal, 7, e6253. https://doi.org/10.4236/oalib.1106253
[40]  Boucherit, A., Moulay, S., Ghernaout, D., Al-Ghonamy, A.I., Ghernaout, B., Naceur, M.W., Ait Messaoudene, N., Aichouni, M., Mahjoubi, A.A. and Elboughdiri, N.A. (2015) New Trends in Disinfection By-Products Formation upon Water Treatment. Journal of Research & Developments in Chemistry, 2015, Article ID: 628833.
[41]  Ghernaout, D., Elboughdiri, N., Ghareba, S. and Salih, A. (2020) Disinfecting Water with the Carbon Fiber-Based Flow-Through Electrode System (FES): Towards Axial Dispersion and Velocity Profile. Open Access Library Journal, 7, e6238. https://doi.org/10.4236/oalib.1106238
[42]  Ghernaout, D. (2017) Environmental Principles in the Holy Koran and the Sayings of the Prophet Muhammad. American Journal of Environmental Protection, 6, 75-79. https://doi.org/10.11648/j.ajep.20170603.13
[43]  Ghernaout, D. and Naceur, M.W. (2011) Ferrate(VI): In Situ Generation and Water Treatment—A Review. Desalination and Water Treatment, 30, 319-332. https://doi.org/10.5004/dwt.2011.2217
[44]  Ghernaout, D., Elboughdiri, N. and Ghareba, S. (2020) Fenton Technology for Wastewater Treatment: Dares and Trends. Open Access Library Journal, 7, e6045. https://doi.org/10.4236/oalib.1106045
[45]  Ghernaout, D. and Elboughdiri, N. (2020) Advanced Oxidation Processes for Wastewater Treatment: Facts and Future Trends. Open Access Library Journal, 7, e6139. https://doi.org/10.4236/oalib.1106139
[46]  Ghernaout, D. (2013) Advanced Oxidation Phenomena in Electrocoagulation Process: A Myth or a Reality? Desalination and Water Treatment, 51, 7536-7554. https://doi.org/10.1080/19443994.2013.792520
[47]  Julio, F.R., Hilario, T.-P., Mabel, V.M., Raymundo, L.C., Arturo, L.-R. and Neftal, R.-V.M. (2015) Disinfection of an Advanced Primary Effluent Using Peracetic Acid or Ultraviolet Radiation for Its Reuse in Public Services. Journal of Water and Health, 13, 118-124. https://doi.org/10.2166/wh.2014.028
[48]  Rajab, M., Heim, C., Letzel, T., Drewes, J.E. and Helmreich, B. (2015) Electrochemical Disinfection Using Boron-Doped Diamond Electrode—The Synergetic Effects of in Situ Ozone and Free Chlorine Generation. Chemosphere, 121, 47-53. https://doi.org/10.1016/j.chemosphere.2014.10.075
[49]  Valero, P., Verbel, M., Silva-Agredo, J., Mosteo, R., Ormad, M.P. and Torres-Palma, R.A. (2017) Electrochemical Advanced Oxidation Processes for Staphylococcus aureus Disinfection in Municipal WWTP Effluents. Journal of Environmental Management, 198, 256-265. https://doi.org/10.1016/j.jenvman.2017.04.070
[50]  Ghernaout, D. and Elboughdiri, N. (2020) UV-C/H2O2 and Sunlight/H2O2 in the Core of the Best Available Technologies for Dealing with Present Dares in Domestic Wastewater Reuse. Open Access Library Journal, 7, e6161. https://doi.org/10.4236/oalib.1106161
[51]  Ghernaout, D., Laribi, C., Alghamdi, A., Ghernaout, B., Ait Messaoudene, N. and Aichouni, M. (2018) Decolorization of BF Cibacete Blue (CB) and Red Solophenyle 3BL (RS) Using Aluminum Sulfate and Ferric Chloride. World Journal of Applied Chemistry, 3, 32-40. https://doi.org/10.11648/j.wjac.20180302.11
[52]  Ghernaout, D. and Ghernaout, B. (2011) On the Controversial Effect of Sodium Sulphate as Supporting Electrolyte on Electrocoagulation Process: A Review. Desalination and Water Treatment, 27, 243-254. https://doi.org/10.5004/dwt.2011.1983
[53]  Rahmani, A.R., Samarghandi, M.R., Nematollahi, D. and Zamani, F. (2019) A Comprehensive Study of Electrochemical Disinfection of Water Using Direct and Indirect Oxidation Processes. Journal of Environmental Chemical Engineering, 7, Article ID: 102785. https://doi.org/10.1016/j.jece.2018.11.030
[54]  Jung, Y.J., Baek, K.W., Oh, B.S. and Kang, J.-W. (2010) An Investigation of the Formation of Chlorate and Perchlorate during Electrolysis Using Pt/Ti Electrodes: The Effects of pH and Reactive Oxygen Species and the Results of Kinetic Studies. Water Research, 44, 5345-5355. https://doi.org/10.1016/j.watres.2010.06.029
[55]  Muff, J. (2014) Electrochemical Oxidation—A Versatile Technique for Aqueous Organic Contaminant Degradation. In: Chemistry of Advanced Environmental Purification Processes of Water, Elsevier B.V., Amsterdam, Ch. 3. https://doi.org/10.1016/B978-0-444-53178-0.00003-1
[56]  Liu, K., Bai, L., Shi, Y., Wei, Z., Spinney, R., G?kta?, R.K., Dionysiou, D.D. and Xiao, R.R. (2020) Simultaneous Disinfection of E. faecalis and Degradation of Carbamazepine by Sulfate Radicals: An Experimental and Modelling Study. Environmental Pollution. https://doi.org/10.1016/j.envpol.2020.114558
[57]  Ojha, A. (2020) Nanomaterials for Removal of Waterborne Pathogens: Opportunities and Challenges. In: Waterborne Pathogens, Elsevier Ltd., Amsterdam, Ch. 19. https://doi.org/10.1016/B978-0-12-818783-8.00019-0
[58]  Ghernaout, D. and Elboughdiri, N. (2020) Antibiotics Resistance in Water Mediums: Background, Facts, and Trends. Applied Engineering, 4, 1-6. https://doi.org/10.4236/oalib.1106003
[59]  Ghernaout, D. and Elboughdiri, N. (2020) Removing Antibiotic-Resistant Bacteria (ARB) Carrying Genes (ARGs): Challenges and Future Trends. Open Access Library Journal, 7, e6003. https://doi.org/10.4236/oalib.1106003
[60]  Ghernaout, D. and Elboughdiri, N. (2020) Should We Forbid the Consumption of Antibiotics to Stop the Spread of Resistances in Nature? Open Access Library Journal, 7, e6138.
[61]  Ni, X.-Y., Liu, H., Wang, C., Wang, W.-L., Xu, Z.-B., Chen, Z., Wu, Y.-H. and Hu, H.-Y. (2020) Comparison of Carbonized and Graphitized Carbon Fiber Electrodes under Flow-Through Electrode System (FES) for High-Efficiency Bacterial Inactivation. Water Research, 168, Article ID: 115150. https://doi.org/10.1016/j.watres.2019.115150
[62]  Anfruns-Estrada, E., Bruguera-Casamada, C., Salvadó, H., Brillas, E., Sirés, I. and Araujo, R.M. (2017) Inactivation of Microbiota from Urban Wastewater by Single and Sequential Electrocoagulation and Electro-Fenton Treatments. Water Research, 126, 450-459. https://doi.org/10.1016/j.watres.2017.09.056
[63]  Ghernaout, D., Alghamdi, A. and Ghernaout, B. (2019) Electrocoagulation Process: A Mechanistic Review at the Dawn of Its Modeling. Journal of Environmental Science and Allied Research, 2, 51-67. https://doi.org/10.29199/2637-7063/ESAR-201019
[64]  Irki, S., Ghernaout, D., Naceur, M.W., Alghamdi, A. and Aichouni, M. (2018) Decolorizing Methyl Orange by Fe-Electrocoagulation Process—A Mechanistic Insight. International Journal of Environmental Chemistry, 2, 18-28. https://doi.org/10.11648/j.ijec.20180201.14
[65]  Irki, S., Ghernaout, D., Naceur, M.W., Alghamdi, A. and Aichouni, M. (2018) Decolorization of Methyl Orange (MO) by Electrocoagulation (EC) Using Iron Electrodes under a Magnetic Field (MF). II. Effect of Connection Mode. World Journal of Applied Chemistry, 3, 56-64. https://doi.org/10.11648/j.wjac.20180302.13
[66]  Irki, S., Ghernaout, D. and Naceur, M.W. (2017) Decolourization of Methyl Orange (MO) by Electrocoagulation (EC) Using Iron Electrodes under a Magnetic Field (MF). Desalination and Water Treatment, 79, 368-377. https://doi.org/10.5004/dwt.2017.20797
[67]  Ghernaout, D., Al-Ghonamy, A.I., Ait Messaoudene, N., Aichouni, M., Naceur, M.W., Benchelighem, F.Z. and Boucherit, A. (2015) Electrocoagulation of Direct Brown 2 (DB) and BF Cibacete Blue (CB) Using Aluminum Electrodes. Separation Science and Technology, 50, 1413-1420. https://doi.org/10.1080/01496395.2014.982763
[68]  Ghernaout, D. and Ghernaout, B. (2012) Sweep Flocculation as a Second Form of Charge Neutralisation—A Review. Desalination and Water Treatment, 44, 15-28. https://doi.org/10.1080/19443994.2012.691699
[69]  Ghernaout, B., Ghernaout, D. and Saiba, A. (2010) Algae and Cyanotoxins Removal by Coagulation/Flocculation: A Review. Desalination and Water Treatment, 20, 133-143. https://doi.org/10.5004/dwt.2010.1202
[70]  Ghernaout, D., Elboughdiri, N., Ghareba, S. and Salih, A. (2020) Coagulation Process for Removing Algae and Algal Organic Matter—An Overview. Open Access Library Journal, 7, e6272. https://doi.org/10.4236/oalib.1106272
[71]  Yao, W., Fu, J., Yang, H., Yu, G. and Wang, Y. (2019) The Beneficial Effect of Cathodic Hydrogen Peroxide Generation on Mitigating Chlorinated By-Product Formation during Water Treatment by an Electro-Peroxone Process. Water Research, 157, 209-217. https://doi.org/10.1016/j.watres.2019.03.049
[72]  Ghernaout, D. and Elboughdiri, N. (2020) On the Treatment Trains for Municipal Wastewater Reuse for Irrigation. Open Access Library Journal, 7, e6088. https://doi.org/10.4236/oalib.1106088
[73]  Hussain, S.N., Trzcinski, A.P., Asghar, H.M.A., Sattar, H., Brown, N.W. and Roberts, E.P.L. (2016) Disinfection Performance of Adsorption Using Graphite Adsorbent Coupled with Electrochemical Regeneration for Various Microorganisms Present in Water. Journal of Industrial and Engineering Chemistry, 44, 216-225. https://doi.org/10.1016/j.jiec.2016.09.009

Full-Text


comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413