全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

Upgrading of Biomass-Derived Feedstocks to Liquid Transportation Fuel Precursors by Aldol Condensation

DOI: 10.4236/oalib.1106185, PP. 1-15

Subject Areas: Chemical Engineering & Technology

Keywords: Biomass, Fuels, Aldol Condensation, Review

Full-Text   Cite this paper   Add to My Lib

Abstract

The upgrading of biomass-derived feedstocks to liquid transportation fuels is complex because of the chemical differences between biomass-derived chemicals and conventional fuels. Aldol condensation may play an important role in converting biomass-derive components to fuels because it allows smaller species to be converted to larger species that are more similar to conventional fuels. This review covers recent progress in aldol condensation of biomass-derived 5-hydroxymethylfurfural, acetone, methyl ketones, acetoin, levulinic acid, furfural, cyclopentanone and levulinic acid. The corresponding catalytic mechanisms and future research directions in these areas are also discussed.

Cite this paper

Jiang, C. (2020). Upgrading of Biomass-Derived Feedstocks to Liquid Transportation Fuel Precursors by Aldol Condensation. Open Access Library Journal, 7, e6185. doi: http://dx.doi.org/10.4236/oalib.1106185.

References

[1]  Conti, J., Holtberg, P., Diefenderfer, J., LaRose, A., Turnure, J.T. and Westfall, L. International Energy Outlook 2016 with Projections to 2040. 1-5. https://www.osti.gov/biblio/1296780
[2]  Hronec, M., Fulajtárova, K., Liptaj, T., Prónayová, N. and Soták, T. (2015) Bio-Derived Fuel Additives from Furfural and Cyclopentanone. Fuel Processing Technology, 138, 564-569. https://doi.org/10.1016/j.fuproc.2015.06.036
[3]  Huber, G.W., Iborra, S. and Corma, A. (2006) Synthesis of Transportation Fuels from Biomass: Chemistry, Catalysts, and Engineering. Chemical Reviews, 106, 4044-4098. https://doi.org/10.1021/cr068360d
[4]  Patel, M. and Kumar, A. (2016) Production of Renewable Diesel through the Hydroprocessing of Lignocellulosic Biomass-Derived Bio-Oil: A Review. Renewable and Sustainable Energy Reviews, 58, 1293-1307. https://doi.org/10.1016/j.rser.2015.12.146
[5]  Carlson, T.R., Vispute, T.P. and Green, G.H. (2008) Gasoline by Catalytic Fast Pyrolysis of Solid Biomass Derived Compounds. ChemSusChem, 1, 397-400. https://doi.org/10.1002/cssc.200800018
[6]  Bridgwater, A.V. (2012) Review of Fast Pyrolysis of Biomass and Product Upgrading. Biomass and Bioenergy, 38, 68-94. https://doi.org/10.1016/j.biombioe.2011.01.048
[7]  López Barreiro, D., Ronsse, F. and Brilman, W. (2013) Hydrothermal Liquefaction (HTL) of Microalgae for Biofuel Production: State of the Art Review and Future Prospects. Biomass and Bioenergy, 53, 113-127. https://doi.org/10.1016/j.biombioe.2012.12.029
[8]  Kumar, S., Lange, J.P., Van Rossum, G. and Kersten, S.R.A. (2015) Liquefaction of Lignocellulose in Fluid Catalytic Cracker Feed: A Process Concept Study. ChemSusChem, 8, 4086-4094. https://doi.org/10.1002/cssc.201500457
[9]  Snehesh Shivananda Ail, S.D. (2016) Biomass to Liquid Transportation Fuel via Fischer Tropsch Synthesis—Technology Review and Current Scenario. Renewable and Sustainable Energy Reviews, 58, 267-286. https://doi.org/10.1016/j.rser.2015.12.143
[10]  Lan, W., Chen, G., Zhu, X., Wang, X. and Xu, B. (2015) Progress in Techniques of Biomass Conversion into Syngas. Journal of the Energy Institute, 88, 151-156. https://doi.org/10.1016/j.joei.2014.05.003
[11]  Sacia, E.R., Balakrishnan, M., Deaner, M.H., Goulas, K.A., Toste, F.D. and Bell, A.T. (2015) Highly Selective Condensation of Biomass-Derived Methyl Ketones as a Source of Aviation Fuel. ChemSusChem, 8, 1726-1736. https://doi.org/10.1002/cssc.201500002
[12]  Shylesh, S., Hanna, D., Gomes, J., Canlas, C.G., Head-Gordon, M. and Bell, A.T. (2015) The Role of Hydroxyl Group Acidity on the Activity of Silica-Supported Secondary Amines for the Self-Condensation of n-Butanal. ChemSusChem, 8, 466-472. https://doi.org/10.1002/cssc.201402443
[13]  Bohre, A., Saha, B. and Abu-Omar, M.M. (2015) Catalytic Upgrading of 5-Hydro- xymethylfurfural to Drop-In Biofuels by Solid Base and Bifunctional Metal-Acid Catalysts. ChemSusChem, 8, 4022-4029. https://doi.org/10.1002/cssc.201501136
[14]  Cueto, J., Faba, L. and Eva Díaz, S.O. (2017) Performance of Basic Mixed Oxides for Aqueous-Phase 5-Hydroxymethylfurfural-Acetone Aldol Condensation. Applied Catalysis B: Environmental, 201, 221-231. https://doi.org/10.1016/j.apcatb.2016.08.013
[15]  Wang, L. and Chen, E.Y.X. (2015) Recyclable Supported Carbene Catalysts for High-Yielding Self-Condensation of Furaldehydes into C10 and C12 Furoins. ACS Catalysis, 5, 6907-6917. https://doi.org/10.1021/acscatal.5b01410
[16]  Choudhary, T.V. and Phillips, C.B. (2011) Renewable Fuels via Catalytic Hydrodeoxygenation. Applied Catalysis A: General, 397, 1-12. https://doi.org/10.1016/j.apcata.2011.02.025
[17]  Dea, S. and Basudeb Saha, R.L. (2015) Hydrodeoxygenation Processes: Advances on Catalytic Transformations of Biomass-Derived Platform Chemicals into Hydrocarbon Fuels. Bioresource Technology, 178, 108-118. https://doi.org/10.1016/j.biortech.2014.09.065
[18]  Charles, L. (2016) Perrin and Kuei-Lin Chang. The Complete Mechanism of an Aldol Condensation. The Journal of Organic Chemistry, 81, 5631-5635. https://doi.org/10.1021/acs.joc.6b00959
[19]  Hernandez, W.Y., Alic, F., Verberckmoes, A. and Tuning, P.V.D.V. (2017) The Acidic-Basic Properties by Zn-Substitution in Mg-Al Hydrotalcites as Optimal Catalysts for the Aldol Condensation Reaction. Journal of Materials Science, 52, 628-642. https://doi.org/10.1007/s10853-016-0360-3
[20]  Pham, T.N., Zhang, L., Shi, D.C., Komarneni, M.R., Ruiz, M.P., Resasco, D.E. and Fine-Tuning, J.F. (2016) The Acid-Base Properties of Boron-Doped Magnesium Oxide Catalyst for the Selective Aldol Condensation. ChemCatChem, 8, 3611-3620. https://doi.org/10.1002/cctc.201600953
[21]  Howard, J., Rackemann, D.W., Bartley, J.P., Samori, C., et al. (2018) Conversion of Sugar Cane Molasses to 5-Hydroxymethylfurfural Using Molasses and Bagasse-Derived Catalysts. ACS Sustainable Chemistry & Engineering, 6, 4531-4538. https://doi.org/10.1021/acssuschemeng.7b02746
[22]  Yong, G., Zhang, Y. and Ying, J.Y. (2008) Efficient Catalytic System for the Selective Production of 5-Hydroxymethylfurfural from Glucose and Fructose. Angewandte Chemie—International Edition, 47, 9345-9348. https://doi.org/10.1002/anie.200803207
[23]  Chheda, J.N. and Dumesic, J.A. (2007) An Overview of Dehydration, Aldol-Con- densation and Hydrogenation Processes for Production of Liquid Alkanes from Biomass-Derived Carbohydrates. Catalysis Today, 123, 59-70. https://doi.org/10.1016/j.cattod.2006.12.006
[24]  Li, S., Chen, F., Li, N., et al. (2017) Synthesis of Renewable Triketones, Diketones, and Jet-Fuel Range Cycloalkanes with 5-Hydroxymethylfurfural and Ketones. ChemSusChem, 10, 711-719.
[25]  Shen, W., Tompsett, G.A., Hammond, K.D., Xing, R., Dogan, F., Grey, C.P., Conner, W.C., Auerbach, S.M. and Huber, G.W. (2011) Liquid Phase Aldol Condensation Reactions with MgO-ZrO2 and Shape-Selective Nitrogen-Substituted NaY. Applied Catalysis A: General, 392, 57-68. https://doi.org/10.1016/j.apcata.2010.10.023
[26]  Lee, R., et al. (2016) CO2-Catalysed Aldol Condensation of 5-Hydroxy-Methylfurfural and Acetone to a Jet Fuel Precursor. Green Chemistry, 18, 5118-5121. https://doi.org/10.1039/C6GC01697A
[27]  Pupovac, K. and Palkovits, R. (2013) Cu/MgAl2O4 as Bifunctional Catalyst for Aldol Condensation of 5-Hydroxymethylfurfural and Selective Transfer Hydrogenation. ChemSusChem, 6, 2103-2110. https://doi.org/10.1002/cssc.201300414
[28]  Suttipat, T.Y. (2017) Aldol Condensation of Biomass-Derived Platform Molecules over Amine-Grafted Hierarchical FAU-Type Zeolite Nanosheets (Zeolean) Featuring Basic Sites. Chemical Communications, 53, 123185-12188. https://doi.org/10.1039/C7CC06375J
[29]  Chen, S., Yang, H.Q., et al. (2015) Theoretical Study on the Reaction Mechanisms of the Aldol-Condensation of 5-Hydroxymethylfurfural with Acetone Catalyzed by MgO and MgO . Catalysis Today, 245, 100-107. https://doi.org/10.1016/j.cattod.2014.05.004
[30]  Anbarasan, P., Baer, Z.C., Sreekumar, S., et al. (2012) Integration of Chemical Catalysis with Extractive Fermentation to Produce Fuels. Nature, 491, 235-239. https://doi.org/10.1038/nature11594
[31]  Multer, A., McGraw, N., Hohn, K. and Vadlani, P. (2013) Production of Methyl Ethyl Ketone from Biomass Using a Hybrid Biochemical/Catalytic Approach. Industrial & Engineering Chemistry Research, 52, 56-60. https://doi.org/10.1021/ie3007598
[32]  Koutinas, A.A., Yepez, B., Kopsahelis, N., Freire, D.M.G., de Castro, A.M., Papanikolaou, S. and Kookos, I.K. (2016) Techno-Economic Evaluation of a Complete Bioprocess for 2,3-Butanediol Production from Renewable Resources. Bioresource Technology, 204, 55-64. https://doi.org/10.1016/j.biortech.2015.12.005
[33]  Balakrishnan, M., et al. (2015) Novel Pathways for Fuels and Lubricants from Biomass optimized Using Life-Cycle Greenhouse Gas Assessment. Proceedings of the National Academy of Sciences of the United States of America, 112, 7645-7649. https://doi.org/10.1073/pnas.1508274112
[34]  Gravelle, K.K., et al. (1998) Activation of Mg-Al Hydrotalcite Catalysts for Aldol Condensation Reactions Kottapalli. Journal of Catalysis, 173, 115-121. https://doi.org/10.1006/jcat.1997.1878
[35]  Balakrishnan, M., Arab, G.E., Kunbargi, O.B., Gokhale, A.A., Grippo, A.M., Toste, F.D. and Bell, A.T. (2016) Production of Renewable Lubricants via Self-Condensation of Methyl Ketones. Green Chemistry, 18, 1-5. https://doi.org/10.1039/C6GC00579A
[36]  Nakajima, K., Baba, Y., Noma, R., et al. (2011) Nb2O5 3nH2O as a Heterogeneous Catalyst with Water-Tolerant Lewis Acid Sites. Journal of the American Chemical Society, 133, 4224-4227. https://doi.org/10.1021/ja110482r
[37]  Lebarbier, V., Houalla, M. and Onfroy, T. (2012) New Insights into the Development of Bronsted Acidity of Niobic Acid. Catalysis Today, 192, 123-129. https://doi.org/10.1016/j.cattod.2012.02.061
[38]  Zhang, B., Li, X.-L., Fu, J., et al. (2016) Production of Acetoin through Simultaneous Utilization of Glucose, Xylose, and Arabinose by Engineered Bacillus subtilis. PLoS ONE, 11, e0159298. https://doi.org/10.1371/journal.pone.0159298
[39]  Zhu, C.J., Shen, T., Liu, D., et al. (2016) Production of Liquid Hydrocarbon Fuels with Acetoin and Platform Molecules Derived from Lignocellulose. Green Chemistry, 18, 2165-2174. https://doi.org/10.1039/C5GC02414E
[40]  Li, X.D., Jia, P., et al. (2016) Furfural: A Promising Platform Compound for Sustainable Production of C4 and C5 Chemicals. ACS Catalysis, 6, 7621-7640. https://doi.org/10.1021/acscatal.6b01838
[41]  Kikhtyanin, O., Hora, L., et al. (2015) Unprecedented Selectivities in Aldol Condensation over Mg-Al Hydrotalcite in a Fixed Bed Reactor Setup. Catalysis Communications, 58, 89-92. https://doi.org/10.1016/j.catcom.2014.09.002
[42]  Thanh, D.N., Kikhtyanin, O., Ramos, R., et al. (2016) Nanosized TiO2—A Promising Catalyst for the Aldol Condensation of Furfural with Acetone in Biomass Upgrading. Catalysis Today, 277, 97-107. https://doi.org/10.1016/j.cattod.2015.11.027
[43]  Hora, L., et al. (2014) Aldol Condensation of Furfural and Acetone over Mg-Al Layered Double Hydroxides and Mixed Oxides. Catalysis Today, 223, 138-147. https://doi.org/10.1016/j.cattod.2013.09.022
[44]  Kikhtyanin, O., Bulánek, R., Frolich, K., et al. (2016) Aldol Condensation of Furfural with Acetone over Ion-Exchanged and Impregnated Potassium BEA Zeolites. Journal of Molecular Catalysis A: Chemical, 424, 358-368. https://doi.org/10.1016/j.molcata.2016.09.014
[45]  Pileidis, F.D. and Titirici, M.M. (2016) Levulinic Acid Biorefineries: New Challenges for Efficient Utilization of Biomass. ChemSusChem, 9, 562-582. https://doi.org/10.1002/cssc.201501405
[46]  Liang, G.F., Wang, A.Q., Zhao, X.C., et al. (2016) Selective Aldol Condensation of Biomass-Derived Levulinic Acid and Furfural in Aqueous-Phase over MgO and ZnO. Green Chemistry, 18, 3430-3438. https://doi.org/10.1039/C6GC00118A
[47]  Zhang, L., Pham, T.N., Faria, J., Santhanaraj, D., Sooknoi, T., Tan, Q., Zhao, Z. and Resasco, D.E. (2016) Synthesis of C4 and C8 Chemicals from Ethanol on MgO-In- corporated Faujasite Catalysts with Balanced Confinement Effects and Basicity. ChemSusChem, 9, 736-748. https://doi.org/10.1002/cssc.201501518
[48]  Hronec, M., Fulajtárová, K., Vávra, I., Soták, T., Dobro?ka, E. and Mi?u?ík, M. (2016) Carbon Supported Pd-Cu Catalysts for Highly Selective Rearrangement of Furfural to Cyclopentanone. Applied Catalysis B: Environmental, 181, 210-219. https://doi.org/10.1016/j.apcatb.2015.07.046
[49]  Hronec, M., et al. (2016) Nickel Catalysed Hydrogenation of Aldol Condensation Product of Furfural with Cyclopentanone to C15 Cyclic Ethers. ChemistrySelect, 2, 331-336. https://doi.org/10.1002/slct.201500001
[50]  Hronec, M., Fulajtárova, K., Liptaj, T., ?tolcová, M., Prónayová, N. and Soták, T. (2014) Cyclopentanone: A Raw Material for Production of C15 and C17 Fuel Precursors. Biomass and Bioenergy, 63, 291-299. https://doi.org/10.1016/j.biombioe.2014.02.025
[51]  Matzker, G. and Burtoloso, A.C.B. (2015) Conversion of Levulinic Acid into c-Valerolactone Using Fe3(CO)12: Mimicking a Biorefinery Setting by Exploiting Crude Liquors from Biomass acid Hydrolysis. Chemical Communications, 51, 14199-14202. https://doi.org/10.1039/C5CC02993G
[52]  Faba, L., Díaz, E. and Ordó?ez, S. (2016) Base-Catalyzed Condensation of Levulinic Acid: A New Biorefinery Upgrading Approach. ChemCatChem, 8, 1490-1494. https://doi.org/10.1002/cctc.201600064
[53]  Jing, Y., Xin, Y., Guo, Y., Liu, X. and Wang, Y. (2019) Highly Efficient Nb2O5 Catalyst for Aldol Condensation of Biomass-Derived Carbonyl Molecules to Fuel Precursors. Chinese Journal of Catalysis, 40, 1168-1177. https://doi.org/10.1016/S1872-2067(19)63371-1
[54]  Cueto, J., Faba, L., Díaz, E. and Ordó?ez, S. (2020) Optimization of the Process Conditions for Minimizing the Deactivation in the Furfural-Cyclopentanone Aldol Condensation in a Continuous Reactor. Applied Catalysis B: Environmental, 263, Article ID: 118341. https://doi.org/10.1016/j.apcatb.2019.118341
[55]  Ngo, D.T., Tan, Q., Wang, B. and Resasco, D.E. (2019) Aldol Condensation of Cyclopentanone on Hydrophobized MgO. Promotional Role of Water and Changes in Rate-Limiting Step upon Organosilane Functionalization. ACS Catalysis, 9, 2831- 2841. https://doi.org/10.1021/acscatal.8b05103

Full-Text


comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413