全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

Controlling Disinfection By-Products Formation in Rainwater: Technologies and Trends

DOI: 10.4236/oalib.1106162, PP. 1-12

Subject Areas: Environmental Sciences

Keywords: Rainwater Harvesting (RWH), Disinfection by-Products (DBPs), Chlor(am)ination, Pre-Oxidation Ultraviolet Related Advanced Oxidation Process (UV-Related AOP), Membrane Processes, Water Treatment

Full-Text   Cite this paper   Add to My Lib

Abstract

With an augmenting lack of pure water, rainwater has been viewed as an invaluable substitutional potable water fountain. The methods implemented for rainwater treatment are in control of the safety of potable water. Researchers examined various disinfection methods to estimate the monitoring of disinfection by-products (DBPs) generation. The tried disinfection techniques involved chlorination and chloramination, pre-oxidation by potassium permanganate (KMnO4) and potassium ferrate (K2FeO4), ultraviolet/hydrogen peroxide (UV/H2O2), and ultraviolet/persulfate (UV/PS) methods. In spite of low contaminants existing in rainwater comparatively with surface water, the same findings are mostly obtained in terms of DBPs production and control procedures using the above-mentioned technologies. Employing granular activated carbon post-treatment could greatly reduce the concentrations and poisonous effects of DBPs. Moreover, secure multi-barrier techniques, like distillation and membrane processes, remain to be suggested, tested and industrially encouraged.

Cite this paper

Ghernaout, D. and Elboughdiri, N. (2020). Controlling Disinfection By-Products Formation in Rainwater: Technologies and Trends. Open Access Library Journal, 7, e6162. doi: http://dx.doi.org/10.4236/oalib.1106162.

References

[1]  Liu, Z., Lin, Y.-L., Chu, W.-H., Xu, B., Zhang, T.-Y., Hu, C.-Y., Cao, T.-C., Gao, N.-Y. and Dong, C.-D. (2020) Comparison of Different Disinfection Processes for Controlling Disinfection by-Product Formation in Rainwater. Journal of Hazardous Materials, 385, Article ID: 121618. https://doi.org/10.1016/j.jhazmat.2019.121618
[2]  Ghernaout, D. (2017) Environmental Principles in the Holy Koran and the Sayings of the Prophet Muhammad. American Journal of Environmental Protection, 6, 75-79. https://doi.org/10.11648/j.ajep.20170603.13
[3]  Ghernaout, D., Ghernaout, B. and Naceur, M.W. (2011) Embodying the Chemical Water Treatment in the Green Chemistry: A Review. Desalination, 271, 1-10. https://doi.org/10.1016/j.desal.2011.01.032
[4]  Ghernaout, D. and Ghernaout, B. (2012) On the Concept of the Future Drinking Water Treatment Plant: Algae Harvesting from the Algal Biomass for Biodiesel Production: A Review. Desalination and Water Treatment, 49, 1-18. https://doi.org/10.1080/19443994.2012.708191
[5]  Ghernaout, D., Badis, A., Braikia, G., Mataam, N., Fekhar, M., Ghernaout, B. and Boucherit, A. (2017) Enhanced Coagulation for Algae Removal in a Typical Algeria Water Treatment Plant. Environmental Engineering and Management Journal, 16, 2303-2315. https://doi.org/10.30638/eemj.2017.238
[6]  Ghernaout, D. (2018) Magnetic Field Generation in the Water Treatment Perspectives: An Overview. International Journal of Advances in Applied Sciences, 5, 193-203. https://doi.org/10.21833/ijaas.2018.01.025
[7]  Ghernaout, D., Aichouni, M. and Alghamdi, A. (2018) Applying Big Data (BD) in Water Treatment Industry: A New Era of Advance. International Journal of Advances in Applied Sciences, 5, 89-97. https://doi.org/10.21833/ijaas.2018.03.013
[8]  Simmons, G., Jury, S., Thornley, C., Harte, D., Mohiuddin, J. and Taylor, M. (2008) A Legionnaires’ Disease Outbreak: A Water Blaster and Roof-Collected Rainwater Systems. Water Research, 42, 1449-1458. https://doi.org/10.1016/j.watres.2007.10.016
[9]  Faragò, M., Brudler, S., Godskesen, B. and Rygaard, M. (2019) An Eco-Efficiency Evaluation of Community-Scale Rainwater and Stormwater Harvesting in Aarhus, Denmark. Journal of Cleaner Production, 219, 601-612. https://doi.org/10.1016/j.jclepro.2019.01.265
[10]  Plewa, M.J., Wagner, E.D., Muellner, M.G., Hsu, K.M. and Richardson, S.D. (2007) Comparative Mammalian Cell Toxicity of N-DBPs and C-DBPs. In: ACS Symposium Series, Chapter 3, Oxford University Press, Oxford, 36-50. https://doi.org/10.1021/bk-2008-0995.ch003
[11]  Ahmed, W., Staley, C., Hamilton, K.A., Beale, D.J., Sadowsky, M.J., Toze, S. and Haas, C.N. (2017) Amplicon-Based Taxonomic Characterization of Bacteria in Urban and Peri-Urban Roof-Harvested Rainwater Stored in Tanks. Science of the Total Environment, 576, 326-334. https://doi.org/10.1016/j.scitotenv.2016.10.090
[12]  Weinberg, H.S., Krasner, S.W., Richardson, S.D. and Thruston Jr., A.D. (2002) The Occurrence of Disinfection by-Products (DBPs) of Health Concern in Drinking Water: Results of a Nationwide DBP Occurrence Study. U.S. Environmental Protection Agency, Washington DC, EPA/600/R-02/068 (NTIS PB2003-106823). https://cfpub.epa.gov/si/si_public_record_report.cfm?Lab=NERL&dirEntryId=63413
[13]  Liu, Z., Lin, Y.L., Xu, B., Hu, C.Y., Wang, A.Q., Gao, Z.C., Xia, S.J. and Gao, N.Y. (2018) Formation of Iodinated Trihalomethanes during Breakpoint Chlorination of Iodide-Containing Water. Journal of Hazardous Materials, 353, 505-513. https://doi.org/10.1016/j.jhazmat.2018.04.009
[14]  Sánchez, A.S., Cohim, E. and Kalid, R.A. (2015) A Review on Physicochemical and Microbiological Contamination of Roof-Harvested Rainwater in Urban Areas. Sustainability of Water Quality and Ecology, 6, 119-137. https://doi.org/10.1016/j.swaqe.2015.04.002
[15]  Zhang, M.S., Xu, B., Wang, Z., Ye, T. and Gao, N.Y. (2016) Formation of Iodinated Trihalomethanes after Ferrate Pre-Oxidation during Chlorination and Chloramination of Iodide-Containing Water. Journal of the Taiwan Institute of Chemical Engineers, 60, 453-459. https://doi.org/10.1016/j.jtice.2015.11.007
[16]  Zhou, X.R., Lin, Y.L., Zhang, T.Y., Xu, B., Chu, W.H., Cao, T.C. and Zhu, W.Q. (2019) Speciation and Seasonal Variation of Various Disinfection by-Products in a Full-Scale Drinking Water Treatment Plant in East China. Water Science and Technology-Water Supply, 19, 1579-1586. https://doi.org/10.2166/ws.2019.026
[17]  Ghernaout, D. and Ghernaout, B. (2010) From Chemical Disinfection to Electrodisinfection: The Obligatory Itinerary? Desalination and Water Treatment, 16, 156-175. https://doi.org/10.5004/dwt.2010.1085
[18]  Ghernaout, D. (2017) Microorganisms’ Electrochemical Disinfection Phenomena. EC Microbiology, 9, 160-169.
[19]  Ghernaout, D. (2018) Disinfection and DBPs Removal in Drinking Water Treatment: A Perspective for a Green Technology. International Journal of Advances in Applied Sciences, 5, 108-117. https://doi.org/10.21833/ijaas.2018.02.018
[20]  Ghernaout, D., Touahmia, M. and Aichouni, M. (2019) Disinfecting Water: Electrocoagulation as an Efficient Process. Applied Engineering, 3, 1-12.
[21]  O’Shea, M.L. and Field, R. (1992) An Evaluation of Bacterial Standards and Disinfection Practices Used for the Assessment and Treatment of Stormwater. In: Advances in Applied Microbiology, Volume 37, Academic Press Inc., New York, 21-40. https://doi.org/10.1016/S0065-2164(08)70251-X
[22]  Ghernaout, D. and Elboughdiri, N. (2020) Is Not It Time to Stop Using Chlorine for Treating Water? Open Access Library Journal, 7, e6007.
[23]  Ghernaout, D., Moulay, S., Ait Messaoudene, N., Aichouni, M., Naceur, M.W. and Boucherit, A. (2014) Coagulation and Chlorination of NOM and Algae in Water Treatment: A Review. International Journal of Environmental Monitoring and Analysis, 2, 23-34. https://doi.org/10.11648/j.ijema.s.2014020601.14
[24]  Ghernaout, D. (2017) Water Treatment Chlorination: An Updated Mechanistic Insight Review. Chemistry Research Journal, 2, 125-138.
[25]  Ghernaout, D., Alghamdi, A., Aichouni, M. and Touahmia, M. (2018) The Lethal Water Tri-Therapy: Chlorine, Alum, and Polyelectrolyte. World Journal of Applied Chemistry, 3, 65-71. https://doi.org/10.11648/j.wjac.20180302.14
[26]  Alshammari, Y., Ghernaout, D., Aichouni, M. and Touahmia, M. (2018) Improving Operational Procedures in Riyadh’s (Saudi Arabia) Water Treatment Plants Using Quality Tools. Applied Engineering, 2, 60-71.
[27]  Ghernaout, D. (2019) Greening Cold Fusion as an Energy Source for Water Treatment Distillation: A Perspective. American Journal of Quantum Chemistry and Molecular Spectroscopy, 3, 1-5.
[28]  Ghernaout, D., Naceur, M.W. and Ghernaout, B. (2011) A Review of Electrocoagulation as a Promising Coagulation Process for Improved Organic and Inorganic Matters Removal by Electrophoresis and Electroflotation. Desalination and Water Treatment, 28, 287-320. https://doi.org/10.5004/dwt.2011.1493
[29]  Ghernaout, D., Ghernaout, B. and Kellil, A. (2009) Natural Organic Matter Removal and Enhanced Coagulation as a Link between Coagulation and Electrocoagulation. Desalination and Water Treatment, 2, 203-222. https://doi.org/10.5004/dwt.2009.116
[30]  Ghernaout, D. and Elboughdiri, N. (2020) Strategies for Reducing Disinfection by-Products Formation during Electrocoagulation. Open Access Library Journal, 7, e6076. https://doi.org/10.4236/oalib.1106076
[31]  Wang, J.Y., Sui, M.H., Yuan, B.J., Li, H.W. and Lu, H.T. (2019) Inactivation of Two Mycobacteria by Free Chlorine: Effectiveness, Influencing Factors, and Mechanisms. Science of the Total Environment, 648, 271-284. https://doi.org/10.1016/j.scitotenv.2018.07.451
[32]  Hu, J.L., Chu, W.H., Sui, M.H., Xu, B., Gao, N.Y. and Ding, S.K. (2018) Comparison of Drinking Water Treatment Processes Combinations for the Minimization of Subsequent Disinfection by-Products Formation during Chlorination and Chloramination. Chemical Engineering Journal, 335, 352-361. https://doi.org/10.1016/j.cej.2017.10.144
[33]  Chu, W.H., Gao, N.Y., Yin, D.Q., Krasner, S.W. and Mitch, W.A. (2014) Impact of UV/H2O2 Pre-Oxidation on the Formation of Haloacetamides and Other Nitrogenous Disinfection Byproducts during Chlorination. Environmental Science & Technology, 48, 12190-12198. https://doi.org/10.1021/es502115x
[34]  Chu, W.H., Li, D.M., Deng, Y., Gao, N.Y., Zhang, Y.S. and Zhu, Y.P. (2016) Effects of UV/PS and UV/H2O2 Pre Oxidations on the Formation of Trihalomethanes and Haloacetonitriles during Chlorination and Chloramination of Free Amino Acids and Short Oligopeptides. Chemical Engineering Journal, 301, 65-72. https://doi.org/10.1016/j.cej.2016.04.003
[35]  Hua, G. and Reckhow, D. (2008) DBP Formation during Chlorination and Chloramination: Effect of Reaction Time, pH, Dosage, and Temperature. Journal of the American Water Works Association, 100, 82-89. https://doi.org/10.1002/j.1551-8833.2008.tb09702.x
[36]  Ghernaout, D., Naceur, M.W. and Aouabed, A. (2011) On the Dependence of Chlorine by-Products Generated Species Formation of the Electrode Material and Applied Charge during Electrochemical Water Treatment. Desalination, 270, 9-22. https://doi.org/10.1016/j.desal.2011.01.010
[37]  Boucherit, A., Moulay, S., Ghernaout, D., Al-Ghonamy, A.I., Ghernaout, B., Naceur, M.W., Ait Messaoudene, N., Aichouni, M., Mahjoubi, A.A. and Elboughdiri, N.A. (2015) New Trends in Disinfection by-Products Formation upon Water Treatment. Journal of Research & Developments in Chemistry, 1-27. https://doi.org/10.5171/2015.628833
[38]  Zhang, T.Y., Hu, Y.R., Jiang, L., Yao, S.J., Lin, K.F., Zhou, Y.B. and Cui, C.Z. (2019) Removal of Antibiotic Resistance Genes and Control of Horizontal Transfer Risk by UV, Chlorination and UV/Chlorination Treatments of Drinking Water. Chemical Engineering Journal, 358, 589-597. https://doi.org/10.1016/j.cej.2018.09.218
[39]  Ghernaout, D. (2013) Advanced Oxidation Phenomena in Electrocoagulation Process: A Myth or a Reality? Desalination and Water Treatment, 51, 7536-7554. https://doi.org/10.1080/19443994.2013.792520
[40]  Ghernaout, D. (2019) Virus Removal by Electrocoagulation and Electrooxidation: New Findings and Future Trends. Journal of Environmental Science and Allied Research, 2019, 85-90. https://doi.org/10.29199/2637-7063/ESAR-202024
[41]  Ghernaout, D. (2019) Electrocoagulation and Electrooxidation for Disinfecting Water: New Breakthroughs and Implied Mechanisms. Applied Engineering, 3, 125-133.
[42]  Lin, T., Li, L., Chen, W. and Pan, S.L. (2012) Effect and Mechanism of Preoxidation Using Potassium Permanganate in an Ultrafiltration Membrane System. Desalination, 286, 379-388. https://doi.org/10.1016/j.desal.2011.11.052
[43]  Clancy, J.L., Bukhari, Z., Hargy, T.M., Bolton, J.R., Dussert, B.W. and Marshall, M.M. (2000) Using UV to Inactivate Cryptosporidium. Journal of the American Water Works Association, 92, 97-104. https://doi.org/10.1002/j.1551-8833.2000.tb09008.x
[44]  Wang, J.L. and Xu, L.J. (2012) Advanced Oxidation Processes for Wastewater Treatment: Formation of Hydroxyl Radical and Application. Critical Reviews in Environmental Science and Technology 42, 251-325. https://doi.org/10.1080/10643389.2010.507698
[45]  Ghernaout, D. and Naceur, M.W. (2011) Ferrate(VI): In Situ Generation and Water Treatment: A Review. Desalination and Water Treatment, 30, 319-332. https://doi.org/10.5004/dwt.2011.2217
[46]  Ghernaout, D. and Elboughdiri, N. (2019) Mechanistic Insight into Disinfection Using Ferrate(VI). Open Access Library Journal, 6, e5946. https://doi.org/10.4236/oalib.1105946
[47]  Ghernaout, D. and Elboughdiri, N. (2019) Water Disinfection: Ferrate(VI) as the Greenest Chemical: A Review. Applied Engineering, 3, 171-180.
[48]  Qi, C.D., Liu, X.T., Ma, J., Lin, C.Y., Li, X.W. and Zhang, H.J. (2016) Activation of Peroxymonosulfate by Base: Implications for the Degradation of Organic Pollutants. Chemosphere, 151, 280-288. https://doi.org/10.1016/j.chemosphere.2016.02.089
[49]  Chu, W.H., Chu, T.F., Bond, T., Du, E.D., Guo, Y.Q. and Gao, N.Y. (2016) Impact of Persulfate and Ultraviolet Light Activated Persulfate Pre-Oxidation on the Formation of Trihalomethanes, Haloacetonitriles and Halonitromethanes from the Chlor(am)ination of Three Antibiotic Chloramphenicols. Water Research, 93, 48-55. https://doi.org/10.1016/j.watres.2016.02.013
[50]  Huang, K.C., Zhao, Z.Q., Hoag, G.E., Dahmani, A. and Block, P.A. (2005) Degradation of Volatile Organic Compounds with Thermally Activated Persulfate Oxidation. Chemosphere, 61, 551-560. https://doi.org/10.1016/j.chemosphere.2005.02.032
[51]  Sarathy, S. and Mohseni, M. (2010) Effects of UV/H2O2 Advanced Oxidation on Chemical Characteristics and Chlorine Reactivity of Surface Water Natural Organic Matter. Water Research, 44, 4087-4096. https://doi.org/10.1016/j.watres.2010.05.025
[52]  Kleiser, G. and Frimmel, F.H. (2000) Removal of Precursors for Disinfection by-Products (DBPs)-Differences between Ozone and OH-Radical-Induced Oxidation. Science of the Total Environment, 256, 1-9. https://doi.org/10.1016/S0048-9697(00)00377-6
[53]  Sarathy, S.R. and Mohseni, M. (2009) The Fate of Natural Organic Matter during UV/H2O2 Advanced Oxidation of Drinking Water. Canadian Journal of Civil Engineering, 36, 160-169. https://doi.org/10.1139/S08-045
[54]  Bae, S., Maestre, J.P., Kinney, K.A. and Kirisits, M.J. (2019) An Examination of the Microbial Community and Occurrence of Potential Human Pathogens in Rainwater Harvested from Different Roofing Materials. Water Research, 159, 406-413. https://doi.org/10.1016/j.watres.2019.05.029
[55]  Kim, R.-H., Lee, S. and Kim, J.-O. (2005) Application of a Metal Membrane for Rainwater Utilization: Filtration Characteristics and Membrane Fouling. Desalination, 177, 121-132. https://doi.org/10.1016/j.desal.2004.12.004
[56]  Ghernaout, D. and El-Wakil, A. (2017) Requiring Reverse Osmosis Membranes Modifications: An Overview. American Journal of Chemical Engineering, 5, 81-88. https://doi.org/10.11648/j.ajche.20170504.15
[57]  Ghernaout, D. (2017) Reverse Osmosis Process Membranes Modeling: A Historical Overview. Journal of Civil, Construction and Environmental Engineering, 2, 112-122.
[58]  Ghernaout, D., El-Wakil, A., Alghamdi, A., Elboughdiri, N. and Mahjoubi, A. (2018) Membrane Post-Synthesis Modifications and How It Came about. International Journal of Advances in Applied Sciences 5, 60-64. https://doi.org/10.21833/ijaas.2018.02.010
[59]  Ait Messaoudene, N., Naceur, M.W., Ghernaout, D., Alghamdi, A. and Aichouni, M. (2018) On the Validation Perspectives of the Proposed Novel Dimensionless Fouling Index. International Journal of Advances in Applied Sciences, 5, 116-122. https://doi.org/10.21833/ijaas.2018.07.014
[60]  Ghernaout, D., Alshammari, Y., Alghamdi, A., Aichouni, M., Touahmia, M. and Ait Messaoudene, N. (2018) Water Reuse: Extenuating Membrane Fouling in Membrane Processes. International Journal of Environmental Analytical Chemistry, 2, 1-12. https://doi.org/10.11648/j.ajche.20180602.12
[61]  Ghernaout, D. (2019) Brine Recycling: Towards Membrane Processes as the Best Available Technology. Applied Engineering, 3, 71-84.
[62]  Wurthmann, K. (2019) Assessing Storage Requirements, Water and Energy Savings, and Costs Associated with a Residential Rainwater Harvesting System Deployed across Two Counties in Southeast Florida. Journal of Environmental Management, 252, Article ID: 109673. https://doi.org/10.1016/j.jenvman.2019.109673
[63]  Gikas, G.D. and Tsihrintzis, V.A. (2012) Assessment of Water Quality of First-Flush Roof Runoff and Harvested Rainwater. Journal of Hydrology, 466-467, 115-126. https://doi.org/10.1016/j.jhydrol.2012.08.020
[64]  Nalwanga, R., Muyanja, C.K., McGuigan, K.G. and Quilty, B. (2018) A Study of the Bacteriological Quality of Roof-Harvested Rainwater and an Evaluation of SODIS as a Suitable Treatment Technology in Rural Sub-Saharan Africa. Journal of Environmental Chemical Engineering, 6, 3648-3655. https://doi.org/10.1016/j.jece.2016.12.008

Full-Text


comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413