全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

Upgrading Wastewater Treatment Plant to Obtain Drinking Water

DOI: 10.4236/oalib.1105959, PP. 1-14

Subject Areas: Hydrology, Chemical Engineering & Technology

Keywords: Water Reuse, Direct Potable Reuse, Water Scarcity, Membrane Processes, Wastewater Treatment, Drinking Water

Full-Text   Cite this paper   Add to My Lib

Abstract

With a growing population and expansion, societies worldwide brave lack water for drinking supply. Undeveloped sources of water should be specified to diminish such issues. Direct potable reuse is a supply-side procedure that can enhance the sustainability and reliability of water supplies via recuperating potable water from wastewater. This work assesses the perspective of upgrading the wastewater treatment plants to obtain potable water. Treating wastewater at the highest level of purity to guarantee the drinking water supply is the best approach to avoid the pollution expansion from wastewater even if it is partially treated to minimize its toxic impacts and provide water for irrigation and industrial use purposes. Treating wastewater at present in the actual wastewater treatment plants should be urgently upgraded to provide potable water through adding processes steps such as nanofiltration, reverse osmosis, and adsorption on activated carbon. Evidently, there is an additional cost for these sophisticated techniques to pay for the better future of the humankind. Finally, from the authors’ point of view, treating wastewater must be continuously improved by using more and more developed techniques and consuming directly treated wastewater as potable water must be only considered as the final issue in the case of hard shortage situations for security reasons.

Cite this paper

Ghernaout, D. and Elboughdiri, N. (2019). Upgrading Wastewater Treatment Plant to Obtain Drinking Water. Open Access Library Journal, 6, e5959. doi: http://dx.doi.org/10.4236/oalib.1105959.

References

[1]  Ghernaout, D., Aichouni, M. and Alghamdi, A. (2018) Overlapping ISO/IEC 17025:2017 into Big Data: A Review and Perspectives. International Journal of Science and Qualitative Analysis, 4, 83-92.
[2]  Ghernaout, D., Aichouni, M., Alghamdi, A. and AitMessaoudene, N. (2018) Big Data: Myths, Realities and Perspectives—A Remote Look. American Journal of Information Science and Technology, 2, 1-8.
https://doi.org/10.11648/j.ajist.20180201.11
[3]  Al Arni, S., Amous, J. and Ghernaout, D. (2019) On the Perspective of Applying of a New Method for Wastewater Treatment Technology: Modification of the Third Traditional Stage with Two Units, One by Cultivating Microalgae and Another by Solar Vaporization. Int. Journal of Environmental Science and Natural Resources, 16, Article ID: 555934. https://doi.org/10.19080/IJESNR.2019.16.555934
[4]  Ghernaout, D. (2013) The Best Available Technology of Wa-ter/Wastewater Treatment and Seawater Desalination: Simulation of the Open Sky Seawater Distillation. Green and Sustaina-ble Chemistry, 3, 68-88. https://doi.org/10.4236/gsc.2013.32012
[5]  Vo, P.T., Ngo, H.H., Guo, W., Zhou, J.L., Nguyen, P.D., Listowski, A. and Wang, X.C. (2014) A Mini-Review on the Impacts of Climate Change on Wastewater Reclamation and Reuse. Science of the Total Environment, 494-495, 9-17.
https://doi.org/10.1016/j.scitotenv.2014.06.090
[6]  Adewumi, J.R., Ilemobade, A.A. and Van Zyl, J.E. (2010) Treated Wastewater Reuse in South Africa: Overview, Potential and Challenges. Resources, Conservation & Recycling, 55, 221-231. https://doi.org/10.1016/j.resconrec.2010.09.012
[7]  Uche, J., Martínez-Gracia, A., Círez, F. and Carmona, U. (2015) Environmental Impact of Water Supply and Water Use in a Mediterranean Water Stressed Region. Journal of Cleaner Production, 88, 196-204.
https://doi.org/10.1016/j.jclepro.2014.04.076
[8]  Wikipedia (2019) Wastewater Treatment.
https://en.wikipedia.org/wiki/Wastewater_treatment
[9]  Ghernaout, D. (2018) Magnetic Field Generation in the Water Treatment Perspectives: An Overview. International Journal of Advanced and Applied Sciences, 5, 193-203. https://doi.org/10.21833/ijaas.2018.01.025
[10]  Ghernaout, D. (2018) Increasing Trends towards Drinking Water Reclamation from Treated Wastewater. World Journal of Applied Chemistry, 3, 1-9.
https://doi.org/10.11648/j.wjac.20180301.11
[11]  Ghernaout, D. (2017) Water Reuse (WR): The Ultimate and Vital Solution for Water Supply Issues. International Journal of Sustainable Development Research, 3, 36-46. https://doi.org/10.11648/j.ijsdr.20170304.12
[12]  Furlong, C., De Silva, S., Gan, K., Guthrie, L. and Considine, R. (2017) Risk Management, Financial Evaluation and Funding for Wastewater and Stormwater Reuse Projects. Journal of Environmental Management, 191, 83-95.
https://doi.org/10.1016/j.jenvman.2017.01.007
[13]  Ghernaout, D., Elboughdiri, N. and Ghareba, S. (2019) Drinking Water Reuse: One-Step Closer to Overpassing the “Yuck Factor”. Open Access Library Journal, 6, e5895. https://doi.org/10.4236/oalib.1105895
[14]  Ghernaout, D., Elboughdiri, N. and Al Arni, S. (2019) Water Reuse (WR): Dares, Restrictions, and Trends. Applied Engineering, 3, 159-170.
[15]  Ghernaout, D., Ghernaout, B. and Naceur, M.W. (2011) Embodying the Chemical Water Treatment in the Green Chemistry: A Review. Desalination, 271, 1-10.
https://doi.org/10.1016/j.desal.2011.01.032
[16]  Herman, J.G., Scruggs, C.E. and Thomson, B.M. (2017) The Costs of Direct and Indirect Potable Water Reuse in a Medium-Sized Arid Inland Community. Journal of Water Process Engineering, 19, 239-247. https://doi.org/10.1016/j.jwpe.2017.08.003
[17]  Ghernaout, D. and Ghernaout, B. (2012) Sweep Flocculation as a Second Form of Charge Neutralisation: A Review. Desalination and Water Treatment, 44, 15-28.
https://doi.org/10.1080/19443994.2012.691699
[18]  Ghernaout, D., Naceur, M.W. and Ghernaout, B. (2011) A Review of Electrocoagulation as a Promising Coagulation Process for Improved Organic and Inorganic Matters Removal by Electrophoresis and Electroflotation. Desalination and Water Treatment, 28, 287-320. https://doi.org/10.5004/dwt.2011.1493
[19]  Ghernaout, D. and Naceur, M.W. (2011) Ferrate (VI): In Situ Generation and Water Treatment: A Review. Desalination and Water Treatment, 30, 319-332.
https://doi.org/10.5004/dwt.2011.2217
[20]  Ghernaout, D. and Ghernaout, B. (2012) On the Concept of the Future Drinking Water Treatment Plant: Algae Harvesting from the Algal Biomass for Biodiesel Production: A Review. Desalination and Water Treatment, 49, 1-18.
https://doi.org/10.1080/19443994.2012.708191
[21]  Kellali, Y. and Ghernaout, D. (2019) Physicochemical and Algal Study of Three Dams (Algeria) and Removal of Microalgae by Enhanced Coagulation. Applied Engineering, 3, 56-64.
[22]  Irki, S., Ghernaout, D., Naceur, M.W., Alghamdi, A. and Aichouni, M. (2018) Decolorizing Methyl Orange by Fe-Electrocoagulation Process: A Mechanistic Insight. International Journal of Environmental Chemistry, 2, 18-28.
https://doi.org/10.11648/j.ijec.20180201.14
[23]  Ghernaout, D., Laribi, C., Alghamdi, A., Ghernaout, B., AitMessaoudene, N. and Aichouni, M. (2018) Decolorization of BF Cibacete Blue (CB) and Red Solophenyle 3BL (RS) Using Aluminum Sulfate and Ferric Chloride. World Journal of Applied Chemistry, 3, 32-40. https://doi.org/10.11648/j.wjac.20180302.11
[24]  Ghernaout, D. (2017) Entropy in the Brownian Motion (BM) and Coagulation Background. Colloid and Surface Science, 2, 143-161.
[25]  Irki, S., Ghernaout, D. and Naceur, M.W. (2017) Decolourization of Methyl Orange (MO) by Electrocoagulation (EC) Using Iron Electrodes under a Magnetic Field (MF). Desalination and Water Treatment, 79, 368-377.
https://doi.org/10.5004/dwt.2017.20797
[26]  Ghernaout, D. (2017) Environmental Principles in the Holy Koran and the Sayings of the Prophet Muhammad. American Journal of Environmental Protection, 6, 75-79. https://doi.org/10.11648/j.ajep.20170603.13
[27]  Ghernaout, D. (2019) Reviviscence of Biological Wastewater Treatment: A Review. Applied Engineering, 3, 46-55.
[28]  Ghernaout, D., Badis, A., Braikia, G., Mataam, N., Fekhar, M., Ghernaout, B. and Boucherit, A. (2017) Enhanced Coagulation for Algae Removal in a Typical Algeria Water Treatment Plant. Environmental Engineering and Management Journal, 16, 2303-2315. https://doi.org/10.30638/eemj.2017.238
[29]  Ghernaout, D. (2019) Virus Removal by Electrocoagulation and Electrooxidation: New Findings and Future Trends. Journal of Environmental Science and Allied Research, 85-90.
[30]  Ghernaout, D. (2019) Electrocoagulation Process for Microalgal Biotechnology: A Review. Applied Engineering, 3, 85-94.
[31]  Boucherit, A., Moulay, S., Ghernaout, D., Al-Ghonamy, A.I., Ghernaout, B., Naceur, M.W., AitMessaoudene, N., Aichouni, M., Mahjoubi, A.A. and Elboughdiri, N.A. (2015) New Trends in Disinfection By-Products Formation upon Water Treatment. Journal of Research & Developments in Chemistry, 2015, Article ID: 628833.
https://doi.org/10.5171/2015.628833
[32]  Ghernaout, D. and Boucherit, A. (2015) Review of Coagulation’s Rapid Mixing for NOM Removal. Journal of Research & Developments in Chemistry, 2015, Article ID: 926518. https://doi.org/10.5171/2015.926518
[33]  Ghernaout, D., Ghernaout, B. and Kellil, A. (2009) Natural Organic Matter Removal and Enhanced Coagulation as a Link between Coagulation and Electrocoagulation. Desalination and Water Treatment, 2, 203-222.
https://doi.org/10.5004/dwt.2009.116
[34]  Ghernaout, D., Ghernaout, B., Saiba, A., Boucherit, A. and Kellil, A. (2009) Removal of Humic Acids by Continuous Electromagnetic Treatment Followed by Electrocoagulation in Batch Using Aluminium Electrodes. Desalination, 239, 295-308.
https://doi.org/10.1016/j.desal.2008.04.001
[35]  Ghernaout, D., Al-Ghonamy, A.I., AitMessaoudene, N., Aichouni, M., Naceur, M.W., Benchelighem, F.Z. and Boucherit, A. (2015) Electrocoagulation of Direct Brown 2 (DB) and BF Cibacete Blue (CB) Using Aluminum Electrodes. Separation Science and Technology, 50, 1413-1420.
https://doi.org/10.1080/01496395.2014.982763
[36]  Ghernaout, D., Benblidia, C. and Khemici, F. (2015) Microalgae Removal from Ghrib Dam (AinDefla, Algeria) Water by Electroflotation Using Stainless Steel Electrodes. Desalination and Water Treatment, 54, 3328-3337.
https://doi.org/10.1080/19443994.2014.907749
[37]  Ghernaout, D., Al-Ghonamy, A.I., Irki, S., Grini, A., Naceur, M.W., Ait Messaoudene, N. and Aichouni, M. (2014) Decolourization of Bromophenol Blue by Electrocoagulation Process. Trends in Chemical Engineering, 15, 29-39.
[38]  Ghernaout, D., Al-Ghonamy, A.I., Naceur, M.W., AitMessaoudene, N. and Aichouni, M. (2014) Influence of Operating Parameters on Electrocoagulation of C.I. Disperse Yellow 3. Journal of Electrochemical Science and Engineering, 4, 271-283.
https://doi.org/10.5599/jese.2014.0065
[39]  Ghernaout, D., Irki, S. and Boucherit, A. (2014) Removal of Cu2 and Cd2 , and Humic Acid and Phenol by Electrocoagulation Using Iron Electrodes. Desalination and Water Treatment, 52, 3256-3270.
https://doi.org/10.1080/19443994.2013.852484
[40]  Ghernaout, D., Naceur, M.W. and Aouabed, A. (2011) On the Dependence of Chlorine By-Products Generated Species Formation of the Electrode Material and Applied Charge during Electrochemical Water Treatment. Desalination, 270, 9-22.
https://doi.org/10.1016/j.desal.2011.01.010
[41]  Ghernaout, D., Mariche, A., Ghernaout, B. and Kellil, A. (2010) Electromagnetic Treatment-Bi-Electrocoagulation of Humic Acid in Continuous Mode Using Response Surface Method for Its Optimization and Application on Two Surface Waters, Desalination and Water Treatment, 22, 311-329.
https://doi.org/10.5004/dwt.2010.1120
[42]  Belhout, D., Ghernaout, D., Djezzar-Douakh, S. and Kellil, A. (2010) Electrocoagulation of a Raw Water of Ghrib Dam (Algeria) in Batch Using Iron Electrodes. Desalination and Water Treatment, 16, 1-9. https://doi.org/10.5004/dwt.2010.1081
[43]  Saiba, A., Kourdali, S., Ghernaout, B. and Ghernaout, D. (2010) In Desalination, from 1987 to 2009, the Birth of a New Seawater Pretreatment Process: Electrocoagulation—An Overview. Desalination and Water Treatment, 16, 201-217.
https://doi.org/10.5004/dwt.2010.1094
[44]  Ghernaout, D., Ghernaout, B., Boucherit, A., Naceur, M.W., Khelifa, A. and Kellil, A. (2009) Study on Mechanism of Electrocoagulation with Iron Electrodes in Idealised Conditions and Electrocoagulation of Humic Acids Solution in Batch Using Aluminium Electrodes. Desalination and Water Treatment, 8, 91-99.
https://doi.org/10.5004/dwt.2009.668
[45]  Ghernaout, D., Ghernaout, B. and Boucherit, A. (2008) Effect of pH on Electrocoagulation of Bentonite Suspensions in Batch Using Iron Electrodes. Journal of Dispersion Science and Technology, 29, 1272-1275.
https://doi.org/10.1080/01932690701857483
[46]  Ghernaout, D., Badis, A., Ghernaout, B. and Kellil, A. (2008) Application of Electrocoagulation in Escherichia coli Culture and Two Surface Waters. Desalination, 219, 118-125. https://doi.org/10.1016/j.desal.2007.05.010
[47]  Ghernaout, D., Al-Ghonamy, A.I., Naceur, M.W., Boucherit, A., Messaoudene, N.A., Aichouni, M., Mahjoubi, A.A. and Elboughdiri, N.A. (2015) Controlling Coagulation Process: From Zeta Potential to Streaming Potential. American Journal of Environmental Protection, 4, 16-27.
https://doi.org/10.11648/j.ajeps.s.2015040501.12
[48]  Ghernaout, D., Al-Ghonamy, A.I., Boucherit, A., Ghernaout, B., Naceur, M.W., AitMessaoudene, N., Aichouni, M., Mahjoubi, A.A. and Elboughdiri, N.A. (2015) Brownian Motion and Coagulation Process. American Journal of Environmental Protection, 4, 1-15. https://doi.org/10.11648/j.ajeps.s.2015040501.11
[49]  Ghernaout, D. (2015) The Hydrophilic/Hydrophobic Ratio vs. Dissolved Organics Removal by Coagulation: A Review. Journal of King Saud University—Science, 26, 169-180. https://doi.org/10.1016/j.jksus.2013.09.005
[50]  Ghernaout, D., Moulay, S., AitMessaoudene, N., Aichouni, M., Naceur, M.W. and Boucherit, A. (2014) Coagulation and Chlorination of NOM and Algae in Water Treatment: A Review. International Journal of Environmental Monitoring and Analysis, 2, 23-34. https://doi.org/10.11648/j.ijema.s.2014020601.14
[51]  Ghernaout, D., Alghamdi, A., Aichouni, M. and Touahmia, M. (2018) The Lethal Water Tri-Therapy: Chlorine, Alum, and Polyelectrolyte. World Journal of Applied Chemistry, 3, 65-71. https://doi.org/10.11648/j.wjac.20180302.14
[52]  Djezzar, S., Ghernaout, D., Cherifi, H., Alghamdi, A., Ghernaout, B. and Aichouni, M. (2018) Conventional, Enhanced, and Alkaline Coagulation for Hard Ghrib Dam (Algeria) Water. World Journal of Applied Chemistry, 3, 41-55.
https://doi.org/10.11648/j.wjac.20180302.12
[53]  Ghernaout, D. (2017) Water Treatment Chlorination: An Updated Mechanistic Insight Review. Chemistry Research Journal, 2, 125-138.
[54]  WHO (World Health Organization). Potable Reuse, Guidance for Producing Safe Drinking-Water, 2017.
https://apps.who.int/iris/bitstream/handle/10665/258715/9789241512770-eng.pdf;jsessionid=E19EC5088893FDF2686A388E31D779DD?sequence=1
[55]  Ghernaout, D., Alshammari, Y. and Alghamdi, A. (2018) Improving Energetically Operational Procedures in Wastewater Treatment Plants. International Journal of Advanced and Applied Sciences, 5, 64-72. https://doi.org/10.21833/ijaas.2018.09.010
[56]  Ghernaout, D. (2019) Disinfection via Electrocoagulation Process: Implied Mechanisms and Future Tendencies. EC Microbiology, 15, 79-90.
[57]  Ghernaout, D. and Elboughdiri, N. (2019) Iron Electrocoagulation Process for Disinfecting Water: A Review. Applied Engineering, 3, 154-158.
[58]  Ghernaout, D. and Elboughdiri, N. (2019) Electrocoagulation Process Intensification for Disinfecting Water: A Review. Applied Engineering, 3, 140-147.
[59]  Ghernaout, D. (2019) Electrocoagulation and Electrooxidation for Disinfecting Water: New Breakthroughs and Implied Mechanisms. Applied Engineering, 3, 125-133.
[60]  Ghernaout, D. (2018) Disinfection and DBPs Removal in Drinking Water Treatment: A Perspective for a Green Technology. International Journal of Advanced and Applied Sciences, 5, 108-117. https://doi.org/10.21833/ijaas.2018.02.018
[61]  Ghernaout, D. and Ghernaout, B. (2010) From Chemical Disinfection to Electrodisinfection: The Obligatory Itinerary? Desalination and Water Treatment, 16, 156-175. https://doi.org/10.5004/dwt.2010.1085
[62]  Quist-Jensen, C.A., Macedonio, F. and Drioli, E. (2015) Membrane Technology for Water Production in Agriculture: Desalination and Wastewater Reuse. Desalination, 364, 17-32. https://doi.org/10.1016/j.desal.2015.03.001
[63]  Ghernaout, D. (2019) Brine Recycling: Towards Membrane Processes as the Best Available Technology. Applied Engineering, 3, 71-84.
[64]  Ghernaout, D. (2013) Advanced Oxidation Phenomena in Electrocoagulation Process: A Myth or a Reality? Desalination and Water Treatment, 51, 7536-7554.
https://doi.org/10.1080/19443994.2013.792520
[65]  Rizzo, L., Malato, S., Antakyali, D., Beretsou, V.G., ?oli?, M.B., Gernjak, W., Heath, E., Ivancev-Tumbas, I., Karaolia, P., Ribeiro, A.R.L., Mascolo, G., McArdell, C.S., Schaar, H., Silva, A.M.T. and Fatta-Kassinos, D. (2019) Consolidated vs New Advanced Treatment Methods for the Removal of Contaminants of Emerging Concern from Urban Wastewater. Science of the Total Environment, 655, 986-1008.
https://doi.org/10.1016/j.scitotenv.2018.11.265
[66]  Ghernaout, D., Aichouni, M. and Alghamdi, A. (2018) Applying Big Data (BD) in Water Treatment Industry: A New Era of Advance. International Journal of Advanced and Applied Sciences, 5, 89-97. https://doi.org/10.21833/ijaas.2018.03.013
[67]  Reverberi, A.P., Maga, L., Cerrato, C. and Fabiano, B. (2014) Membrane Processes for Water Recovery and Decontamination. Current Opinion in Chemical Engineering, 6, 75-82. https://doi.org/10.1016/j.coche.2014.10.004
[68]  AitMessaoudene, N., Naceur, M.W., Ghernaout, D., Alghamdi, A. and Aichouni, M. (2018) On the Validation Perspectives of the Proposed Novel Dimensionless Fouling Index. International Journal of Advanced and Applied Sciences, 5, 116-122.
https://doi.org/10.21833/ijaas.2018.07.014
[69]  Ghernaout, D., Alshammari, Y., Alghamdi, A., Aichouni, M., Touahmia, M. and AitMessaoudene, N. (2018) Water Reuse: Extenuating Membrane Fouling in Membrane Processes. International Journal of Environmental Chemistry, 2, 1-12.
https://doi.org/10.11648/j.ajche.20180602.12
[70]  Ghernaout, D., El-Wakil, A., Alghamdi, A., Elboughdiri, N. and Mahjoubi, A. (2018) Membrane Post-Synthesis Modifications and How It Came about. International Journal of Advanced and Applied Sciences, 5, 60-64.
https://doi.org/10.21833/ijaas.2018.02.010
[71]  Ghernaout, D., Alghamdi, A., Touahmia, M., Aichouni, M. and AitMessaoudene, N. (2018) Nanotechnology Phenomena in the Light of the Solar Energy. Journal of Energy, Environmental & Chemical Engineering, 3, 1-8.
https://doi.org/10.11648/j.jeece.20180301.11
[72]  Irki, S., Ghernaout, D., Naceur, M.W., Alghamdi, A. and Aichouni, M. (2018) Decolorization of Methyl Orange (MO) by Electrocoagulation (EC) Using Iron Electrodes under a Magnetic Field (MF). II. Effect of Connection Mode. World Journal of Applied Chemistry, 3, 56-64. https://doi.org/10.11648/j.wjac.20180302.13
[73]  Ghernaout, B., Ghernaout, D. and Saiba, A. (2010) Algae and Cyanotoxins Removal by Coagulation/Flocculation: A Review. Desalination and Water Treatment, 20, 133-143. https://doi.org/10.5004/dwt.2010.1202
[74]  Ghernaout, D. (2017) Reverse Osmosis Process Membranes Modeling: A Historical Overview. Journal of Civil, Construction and Environmental Engineering, 2, 112-122.
[75]  Ghernaout, D. and El-Wakil, A. (2017) Requiring Reverse Osmosis Membranes Modifications: An Overview. American Journal of Chemical Engineering, 5, 81-88.
https://doi.org/10.11648/j.ajche.20170504.15
[76]  Alshammari, Y., Ghernaout, D., Aichouni, M. and Touahmia, M. (2018) Improving Operational Procedures in Riyadh’s (Saudi Arabia) Water Treatment Plants Using Quality Tools. Applied Engineering, 2, 60-71.
[77]  Ghernaout, D. (2019) Greening Cold Fusion as an Energy Source for Water Treatment Distillation: A Perspective. American Journal of Quantum Chemistry and Molecular Spectroscopy, 3, 1-5.
[78]  Ghernaout, D. (2017) Microorganisms’ Electrochemical Disinfection Phenomena. EC Microbiology, 9, 160-169.
[79]  Ipek, I., Kabay, N. and Yüksel, M. (2017) Separation of Bisphenol A and Phenol from Water by Polymeradsorbents: Equilibrium and Kinetics Studies. Journal of Water Process Engineering, 16, 206-211. https://doi.org/10.1016/j.jwpe.2017.01.006
[80]  Vilela, C.L.S., Bassin, J.P. and Peixoto, R.S. (2018) Water Contamination by Endocrine Disruptors: Impacts, Microbiological Aspects and Trends for Environmental Protection. Environmental Pollution, 235, 546-559.
https://doi.org/10.1016/j.envpol.2017.12.098
[81]  Jiang, L., Yang, J. and Chen, J. (2010) Isolation and Characteristics of 17beta-Estradiol-Degrading Bacillus spp. Strains from Activated Sludge. Biodegradation, 21, 729-736. https://doi.org/10.1007/s10532-010-9338-z
[82]  Guieysse, B. and Norvill, Z.N. (2014) Sequential Chemical-Biological Processes for the Treatment of Industrial Wastewaters: Review of Recent Progresses and Critical As-sessment. Journal of Hazardous Materials, 267, 142-152.
https://doi.org/10.1016/j.jhazmat.2013.12.016
[83]  Ghernaout, D., Simoussa, A., Alghamdi, A., Ghernaout, B., Elboughdiri, N., Mahjoubi, A., Aichouni, M. and El-Wakil, A.E.A. (2018) Combining Lime Softening with Alum Coagulation for Hard Ghrib Dam Water Conventional Treatment. International Journal of Advanced and Applied Sciences, 5, 61-70.
https://doi.org/10.21833/ijaas.2018.05.008
[84]  Ghernaout, D. (2018) Electrocoagulation Process: Achievements and Green Perspectives. Colloid and Surface Science, 3, 1-5.
https://doi.org/10.11648/j.css.20180301.11
[85]  Ghernaout, D. (2019) Greening Electrocoagulation Process for Disinfecting Water. Applied Engineering, 3, 27-31.
[86]  Ghernaout, D., Alghamdi, A. and Ghernaout, B. (2019) Microorganisms’ Killing: Chemical Disinfection vs. Electrodisinfection. Applied Engineering, 3, 13-19.
[87]  Ghernaout, D., Aichouni, M. and Touahmia, M. (2019) Mechanistic Insight into Disinfection by Electrocoagulation: A Review. Desalination and Water Treatment, 141, 68-81. https://doi.org/10.5004/dwt.2019.23457
[88]  Ghernaout, D., Touahmia, M. and Aichouni, M. (2019) Disinfecting Water: Electrocoagulation as an Efficient Process. Applied Engineering, 3, 1-12.
[89]  Ghernaout, D. (2019) Aeration Process for Removing Radon from Drinking Water: A Review. Applied Engineering, 3, 32-45.
[90]  Scruggs, C.E. and Thomson, B.M. (2017) Opportunities and Challenges for Direct Potable Water Reuse in Arid Inland Communities. Journal of Water Resources Planning and Management, 143, Article ID: 04017064.
https://doi.org/10.1061/(ASCE)WR.1943-5452.0000822
[91]  Hummer, N. and Eden, S. (2016) “Potable Reuse of Water” Arroyo. University of Arizona Water Resources Research Center, Tucson.
http://wrrc.arizona.edu/publications/arroyo-newsletter/arroyo-2016-Potable-Reuse-of-Water
[92]  Ghernaout, D. and Elboughdiri, N. (2019) Mechanistic Insight into Disinfection Using Ferrate (VI). Open Access Library Journal, 6, e5946.

Full-Text


comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413