全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

Generation of Some Catastrophes in Optics by Binary Screens

DOI: 10.4236/oalib.1105958, PP. 1-15

Subject Areas: Photochemistry

Keywords: Fold Caustic, Swallowtail Caustic, Wigwam Caustic, Airy-Hardy Integrals, Fraunhofer Diffraction Pattern, Catastrophes Optics

Full-Text   Cite this paper   Add to My Lib

Abstract

In this paper, the artificial generation of elementary catastrophe optics having odd codimensions K = 1, 3 and 5 such as the Fold, the Swallowtail and the Wigwam diffraction caustics is investigated theoretically. It is shown that the integral catastrophes with odd polynomials phase functions can be reduced to the well-known Airy-Hardy cosine integrals. In this connection, the caustic functions of the Fold, Swallowtail and Wigwam caustic beams are expressed in closed-form in terms of Airy-Hardy cosine functions. An optical method based on the Fourier transform similar to that described by Lohmann et al. [Optics Comm. 109 (1994) 361-367] is proposed for the generation of the Fold, Swallowtail and Wigwam caustic beams. The displaying of the catastrophe patterns with K = 1, 3 and 5 is optically implemented in the Fourier transform device by using simple binary screens with tailored polynomials transmission.

Cite this paper

Belafhal, A. , Hricha, Z. and Halba, E. M. E. (2019). Generation of Some Catastrophes in Optics by Binary Screens. Open Access Library Journal, 6, e5958. doi: http://dx.doi.org/10.4236/oalib.1105958.

References

[1]  Goodman, J.W., Kellmannad, P. and Hansen, E.W. (1977) Linear Space-Variant Optical Processing of 1-D Signals. Applied Optics, 16, 733-738.
https://doi.org/10.1364/AO.16.000733
[2]  Lohmann, A.W., O-Castaneda, J. and Heredia, A.S. (1994) Bessel Functions and Laguerre Polynomials: Parallel Display and Processing. Optics Letters, 19, 55-57.
https://doi.org/10.1364/OL.19.000055
[3]  Lohmann, A.W., O-Castaneda, J. and Ibarra, J.G. (1994) Airy Function and Laguerre Polynomials: Optical Display and Processing. Optics Communications, 109, 361-367. https://doi.org/10.1016/0030-4018(94)90482-0
[4]  Berry, M.V. and Balazs, N.L. (1979) Nonspreading Wave Packets. American Journal of Physics, 47, 264-267. https://doi.org/10.1119/1.11855
[5]  Siviliglou, G.A., Broky, J., Dogariu, A. and Chritodoulides, D.N. (2007) Observation of Accelerating Airy Beams. Physical Review Letters, 99, Article ID: 213901.
https://doi.org/10.1103/PhysRevLett.99.213901
[6]  Siviliglou, G.A. and Chritodoulides, D.N. (2007) Accelerating Finite Energy Airy Beams. Optics Letters, 32, 979-981. https://doi.org/10.1364/OL.32.000979
[7]  Ez-Zariy, L., Nebdi, H., Boustimi, M. and Belafhal, A. (2014) Transformation of a Two-Dimensional Finite Energy Airy Beam by an ABCD Optical System with a Rectangular Annular Aperture. Physical and Chemical News, 73, 39-49.
[8]  Ez-Zariy, L., Hennani, S., Nebdi, H. and Belafhal, A. (2014) Propagation Characteristics of Airy-Gaussian Beams Passing through a Misaligned Optical System with Finite Aperture. Optics and Photonics Journal, 4, 325-336.
https://doi.org/10.4236/opj.2014.411033
[9]  Ebrahim, A.A.A., Ez-Zariy, L. and Belafhal, A. (2015) Propagation of Finite Airy-Hermite Hollow Gaussian Beams through a Paraxial ABCD Optical System. International Journal of Advancement in Earth and Environmental Sciences, 3, 11-20.
[10]  Ez-Zariy, L., Hricha, Z. and Belafhal, A. (2015) Novel Finite Airy Beams Generated from Gaussian Array Beams Illuminating an Optical Airy Transform System. Progress in Electromagnetics, 49, 41-50. https://doi.org/10.2528/PIERM16041909
[11]  Ez-Zariy, L., Boufalah, F., Dalil-Essakali, L. and Belafhal, A. (2018) Conversion of the Hyperbolic-Cosine Gaussian Beam to a Novel Finite Airy-Related Beam Using an Optical Airy Transform System. Optik, 171, 501-506.
https://doi.org/10.1016/j.ijleo.2018.06.091
[12]  Ouahid, L., Dalil-Essakali, L. and Belafhal, A. (2018) Effect of Light Absorption and Temperature on Self-Focusing of Finite Airy-Gaussian Beams in a Plasma with Relativistic and Ponderomotive Regime. Optical and Quantum Electronics, 50, 216.
https://doi.org/10.1007/s11082-018-1483-3
[13]  Ouahid, L., Dalil-Essakali, L. and Belafhal, A. (2018) Relativistic Self-Focusing of Finite Airy-Gaussian Beams in Collisionless Plasma Using the Wentzel-Kramers- Brillouin Approximation. Optik, 154, 58-66.
https://doi.org/10.1016/j.ijleo.2017.10.009
[14]  Yaalou, M., Hricha, Z., El Halba, E.M. and Belafhal, A. (2019) Production of Airy-Related Beams by an Airy Transform Optical System. Optical and Quantum Electronics, 51, 308. https://doi.org/10.1007/s11082-019-2023-5
[15]  Yaalou, M., Hricha, Z. and Belafhal, A. (2019) Propagation Properties of Finite Cosh-Airy Beams through an Airy Transform Optical System. Optical and Quantum Electronics, 51, 356. https://doi.org/10.1007/s11082-019-2075-6
[16]  Ring, J.D., Lindberg, J., Mourka, A., Mazilu, M., Dholakia, K. and Denis, M.R. (2012) Autofocusing and Self-Healing of Pearcey Beams. Optics Express, 20, 18955-18966. https://doi.org/10.1364/OE.20.018955
[17]  Boufalah, F., Dalil-Essakali, L., Nebdi, H. and Belafhal, A. (2016) Effect of Turbulent Atmosphere on the On-Axis Average Intensity of Pearcey-Gaussian Beam. Chinese Physics B, 25, Article ID: 064208. https://doi.org/10.1088/1674-1056/25/6/064208
[18]  Berry, M.V. and Upsill, C. (1980) Catastrophe Optics: Morphologies of Caustics and Their Diffraction Patterns. Progress in Optics, 18, 257-346.
https://doi.org/10.1016/S0079-6638(08)70215-4
[19]  Stewart, I. (1981) Applications of Catastrophe Theory to Physical Sciences. Physica D: Nonlinear Phenomena, 2, 245-305.
https://doi.org/10.1016/0167-2789(81)90012-9
[20]  Kravtsov, Y.A. and Orlov, Yu.I. (1983) Caustics, Catastrophes, and Wave Fields. Uspekhi Fizicheskikh Nauk, 141, 591-627.
https://doi.org/10.3367/UFNr.0141.198312b.0591
[21]  Nye, J.F. (1999) Natural Focusing and Five Structures of Light: Caustics and Wave Dislocation. IOP Publishing, Bristol.
[22]  Hobbs, C.A., Connor, J.N.L and Kirk, N.P. (2007) Theory and Numerical Evaluation of Oddoids and Evenoids: Oscillatory Cuspoid Integrals with Odd and Even Polynomial Phase Functions. Journal of Computational and Applied Mathematics, 207, 192-213. https://doi.org/10.1016/j.cam.2006.10.079
[23]  Watson, G.N. (1944) A Treatise of the Theory of Bessel Functions. Cam-bridge University Press, Cambridge.
[24]  Zannotti, A., Diebel, F., Boguslawski, M. and Denz, C. (2017) Optical Catastrophes of the Swallowtail and Butterfly Beams. New Journal of Physics, 19, Article ID: 053004. https://doi.org/10.1088/1367-2630/aa6ecd
[25]  Zannotti, A., Diebel, F. and Denz, C. (2017) Dynamics of Optical Swallowtail Catastrophe. Optica, 4, 1157-1162. https://doi.org/10.1364/OPTICA.4.001157
[26]  Zannoti, A., Ruschenbaum, M. and Denis, C. (2017) Dynamics of Optical Swallowtail Catastrophe. Journal of Optics, 19, Article ID: 94001.
[27]  Cheng, K., Lu, G. and Zhong, X. (2017) The Poynting Vector and Angular Momentum Density of the Swallowtail-Gauss Beams. Optics Communications, 396, 58-65. https://doi.org/10.1016/j.optcom.2017.03.038
[28]  Cheng, K., Lu, G., Zhou, Y., Yao, N. and Zhong, X. (2018) The Poynting Vector and Angular Momentum Density of the Autofocusing Butterfly-Gauss Beams. Optics and Laser Technology, 105, 23-34. https://doi.org/10.1016/j.optlastec.2018.02.029
[29]  Abramowitz, M. and Stegun, I.A. (1964) Handbook of Mathematical Functions. Nath. Bureau of Standards, Washington DC.

Full-Text


comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413