全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

Research on the Seismic Response of Residential Buildings Located in Areas of High Seismic Risk in Cuba

DOI: 10.4236/oalib.1105854, PP. 1-16

Subject Areas: Geodesy

Keywords: Linear and Non Linear Analysis, Incremental Dynamic Analysis, Prefabricated Existing Buildings, Seismic Structural Analysis, Fragility Analysis, Collapse Limit State, Sustainable Habitat

Full-Text   Cite this paper   Add to My Lib

Abstract

Probabilistic assessment expressed through analytical fragility curves of the multifamily housing buildings, located in the southeastern region of Cuba, is presented. Motivated by the latest update of the Cuban code for seismic re-sistance analysis of structures, NC 46:2017, which has been the object of im-portant changes with regard to the seismic design approaches, the evaluation of the adequacy of existing structures becomes an imperative. Additional reasons that emphasize this need are related to the update of the seismic hazard map for Cuba dated 2017, in which the values of spectral accelerations have been significantly increased, compared to the normative in use at the date of these structures were erected. This fact justifies the seismic reassessment program of a large number of housing buildings located in high-risk areas. To express the structural response under seismic loading, the nonlinear procedures for seismic performance assessment of buildings which combine nonlinear static (pushover) analysis of entire structure and nonlinear response history analysis (NRHA) of an equivalent single-degree-offreedom (SDOF) model have been used. Finally, seismic behavior of one selected structural system through the analytical fragility curves is obtained.

Cite this paper

Pupo, D. , Valdés, V. M. , Martínez, R. , Fernández, R. M. and Recarey, C. A. (2019). Research on the Seismic Response of Residential Buildings Located in Areas of High Seismic Risk in Cuba. Open Access Library Journal, 6, e5854. doi: http://dx.doi.org/10.4236/oalib.1105854.

References

[1]  NC-46 (2017) Construcciones Sismo Resistentes. Requisitos básicos para el diseno y construcción, Cuba. Comité Estatal de Normalización.
[2]  Holicky, M., et al. (2013) Basics for Assessment Existing Structures. Milan Klokner Institute, Czech Technical University in Prague, Czech Republic.
[3]  Arango, E.D. (2014) Análisis sismo-tectónico del territorio oriental de Cuba a partir de la integración del modelo de corteza 3D de datos gravimétricos con datos sismológicos y geodésicos. Phd Centro de Investigación científica y de educación superior de Ensenada, Baja California.
[4]  García, J.A. (2007) Estimados de peligrosidad sísmica con el errores asociados para Cuba, y cálculo de pérdidas para la ciudad de Santiago de Cuba usando técnicas SIG. PhD Centro Nacional de Investigaciones Sismológicas Instituto de Geofísica y Astroomía. Ministerio de Ciencia, Tecnología y Medio Ambiente. La Habana- Trieste.
[5]  Alvarez, L., Villalón, M. and Lindholm, C. (2015) Informe principal de la Tarea 2. Peligrosidad sísmica, principios y herramientas. Noruega-Cuba. Centro Nacional de Investigaciones Sismológicas. Cuba.
[6]  Naein, F., Alimoradi, A. and Pezeshk, S. (2004) Selection and Scaling of Ground Motion Time Histories for Structural Design Using Genetic Algorithms. Earthquakes Spectra, 20, 413-426. https://doi.org/10.1193/1.1719028
[7]  Fahjan, Y.M. and Ozdemir, K. (2007) Procedures for Real Earthquake Time Histories Scaling Application to Fit Iranian Design Spectra. V Internacional Conference of Seismology and Earthquake Engineering, Teheran, May 2007.
[8]  Chang, S.M., Ruiz, S.E. and Montiel, M.A. (2005) Escalamiento de acelerogramas y número mínimo de registros requerido para el análisis de estructuras, Revista de Ingeniería Sísmica, enero-junio, número 072. Sociedad mexicana de Ingeniería sísmica, AC, Distrito Federal, México.
[9]  Atkinson, G.M. (2009) Earthquake Time Histories Compatible with the 2005 NBCC Uniform Hazard Spectrum. Canadian Journal of Civil Engineering, 36, 991-1000.
https://doi.org/10.1139/L09-044
[10]  Shahrouzi (2011) A New Irbid Genetic and Swarm Optimization for Earthquake Accelerogram Scaling. International Journal of Optimization in Civil Engineering, 1, 127-140.
[11]  Reyes, J.C. and Kalkan, E. (2001) Número de registros sísmicos requeridos para el procedimiento de escalamiento ASCE, Memorias del V Congreso Nacional de Inge- niería Sísmica, Medellín, Colombia.
[12]  Dhakal, R.P., Singh, S. and Mander, J.B. (2007) Effectiveness of Earthquake Selection and Scaling Method in New Zealand. Bulletin of the New Zealand Society for Earthquake Engineering, 40, 160-171.
[13]  Pacific Earthquake Engineering Research Center (2005) PEER Strong Motion Database on Line. Berkley.
https://peer.berkeley.edu/peer-strong-ground-motion-databases
[14]  ISESD Data Bank of the Project CD ROM (2004) Disemination of European Strong Motion Database. (Europa y Oriente Medio). Collaboration of N. N. Ambraseys and, J. Douglas from Dept. of Civil & Environmental Engineering, Imperial College of Science, Technology & Medicine, London.
[15]  Fajfar, P. (2000) A Nonlinear Analysis Method for Performance Based Seismic Design. Earthquake Spectra, 16, 573-592. https://doi.org/10.1193/1.1586128
[16]  McKenna, F., Fenves, G.L. and Scott, M.H. (2003) Open System for Earthquake Engineering Simulation. Pacific Earthquake Engineering Research Center, University of California, Berkeley. http://opensees.berkeley.edu
[17]  Lin, T. and Baker, J.W. (2013) Introducing Adaptive Incremental Dynamic Analysis: A New Tool for Linking Ground Motion Selection and Structural Response Assessment. 11th International Conference on Structural Safety & Reliability, New York, 16-20 June 2013, 805-811.
[18]  Brozovic, M. and Dolsek, M. (2011) Computational Efficiency of Progressive Incremental Dynamic Analysis. 3rd ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, 25-28 May 2011.
[19]  Padgett, J.E., et al. (2008) Earthquake Engineering and Structural Dynamics. Wiley InterScience, Hoboken. http://www.interscience.wiley.com
[20]  Conte, J.P. (2003) Ground Motion Intensity Measures for Performance-Based Earthquake Engineering. Proceedings of the 9th International Conference on Applications of Statistics and Probability in Civil Engineering, San Francisco, 6-9 July 2003.
[21]  Baker, J.W. and Cornell, C.A. (2005) A Vector-Valued Ground Motion Intensity Measure Consisting of Spectral Acceleration and Epsilon. Earthquake Engineering and Structural Dynamics. Wiley, Hoboken. http://www.interscience.wiley.com
https://doi.org/10.1002/eqe.474
[22]  Haselton, C.B. and Baker, J.W. (2006) Ground Motion Intensity Measures for Collapse Capacity Prediction: Choice of Optimal Spectral Period and Effect of Spectral Shape. 8NCEE, San Francisco, April 2006.
[23]  Bojórquez, E., et al. (2012) Comparing Vector-Valued Intensity Measures for Fragility Analysis of Steel Frames in the Case of Narrow-Band Ground Motions. Engineering Structures, 45, 472-480. https://doi.org/10.1016/j.engstruct.2012.07.002
[24]  Bianchini, M., Diotallevi, P.P. and Landi, L. (2008) Influence of Earthquake Intensity Measure on the Probabilistic Evaluation of RC Buildings. 14th World Conference on Earthquake Engineering, Beijing, 12-17 October 2008.
[25]  Majid Baradaran, S. (2013) Collapse Assessment of Concrete Buildings: An Application to Non-Ductile Reinforced Concrete Moment Frames.
[26]  NIST GCR 10-917-7 (2010) Program Plan for the Development of Collapse Assessment and Mitigation Strategies for Existing Reinforced Concrete Buildings.
[27]  CNR-DT 212 (2014) Guide for the Probabilistic Assessment of the Seismic Safety of Existing Buildings. CNR of Italy.
[28]  Vamvatsikos, D. and Cornell, C.A. (2002) Tracing and Post-Processing of IDA Curves: Theory and Software Implementation. Report No. RMS-44, RMS Program, Stanford University, Stanford.
[29]  Vamvatsikos, D. and Cornell, C.A. (2005) Seismic Performance, Capacity and Reliability of Structures as Seen through Incremental Dynamic Analysis. John A. Blume Earthquake Engineering Center Technical Report 151, Standford Digital Repository. https://purl.stanford.edu/qs357yj1571
[30]  Vamvatsikos, D. and Fragiadakis, M. (2009) Incremental Dynamic Analysis for Estimating Seismic Performance Sensitivity and Uncertainty. Earthquake Engineering and Structural Dynamics, 39, 141-163. https://doi.org/10.1002/eqe.935

Full-Text


comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413