全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

Different Categories of Quantum Fields

DOI: 10.4236/oalib.1105802, PP. 1-14

Subject Areas: Quantum Mechanics

Keywords: Quantum Field Theories, The Variational Principle, Fields of Elementary Particles

Full-Text   Cite this paper   Add to My Lib

Abstract

Properties of a quantum field that represents an elementary particle and a quantum field that mediates an interaction between particles are analyzed. This analysis relies on fundamental physical principles. The mathematical structure of these fields proves that they are completely different physical objects. A further analysis proves that a quantum field that represents an elementary massive particle and a quantum field that represents a massless particle have a completely different mathematical structure. The results are used in an examination of free spin-1/2 elementary massive particles and other free elementary particles that have an integral spin. Inherent inconsistencies are found for elementary massive particles that have an integral spin and for the Majorana neutrino. The analysis also proves that interaction mediating fields do not represent a genuine particle.

Cite this paper

Comay, E. (2019). Different Categories of Quantum Fields. Open Access Library Journal, 6, e5802. doi: http://dx.doi.org/10.4236/oalib.1105802.

References

[1]  Wigner, E. (1939) On Unitary Representations of the Inhomogeneous Lorentz Group. Annals of Mathematics, 40, 149-204. https://doi.org/10.2307/1968551
[2]  Weinberg, S. (1995) The Quantum Theory of Fields, Vol. I. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9781139644167
[3]  Schweber, S.S. (1964) An Introduction to Relativistic Quantum Field Theory. Harper & Row, New York, 44-53.
[4]  Sternberg, S. (1994) Group Theory and Physics. Cambridge University Press, Cambridge, 143-150.
[5]  Dehmelt, H. (1988) A Single Atomic Particle Forever Floating at Rest in Free Space: New Value for Electron Radius. Physica Scripta, T22, 102.
https://doi.org/10.1088/0031-8949/1988/T22/016
[6]  Tanabashi, M., et al. (2018) Review of Particle Physics. Physical Review D, 98, Article ID: 030001.
[7]  Griffiths, D. (2008) Introduction to Elementary Particles. 2nd Edition, Wiley-VCH, Weinheim.
[8]  Messiah, A. (1967) Quantum Mechanics. Vol. 1, North Holland, Amsterdam.
[9]  Schiff, L.I. (1955) Quantum Mechanics. McGraw-Hill, New York.
[10]  Dirac, P.A.M. (1958) The Principles of Quantum Mechanics. Oxford University Press, London. https://doi.org/10.1063/1.3062610
[11]  Halzen, F. and Martin, A.D. (1984) Quarks and Leptons: An Introductory Course in Modern Particle Physics. John Wiley, New York.
[12]  Bjorken, J.D. and Drell, S.D. (1965) Relativistic Quantum Fields. McGraw-Hill, New York. https://doi.org/10.1063/1.3047288
[13]  Sterman, G. (1993) An Introduction to Quantum Field Theory. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511622618
[14]  Landau, L.D. and Lifshitz, E.M. (2005) The Classical Theory of Fields. Elsevier, Amsterdam.
[15]  Peskin, M.E. and Schroeder, D.V. (1995) An Introduction to Quantum Field Theory. Addi-son-Wesley, Reading.
[16]  Bjorken, J.D. and Drell, S.D. (1964) Relativistic Quantum Mechanics. McGraw-Hill, New York.
[17]  Pauli, W. and Weisskopf, V. (1934) Uber die Quantisierung der skalaren relativistischen Wellengleichung. Helvetica Physica Acta, 7, 709-731.
Miller, A.I. (1994) Early Quantum Electrodynamics. University Press, Cambridge, 188-205.
[18]  Jackson, J.D. (1975) Classical Electrodynamics. 2nd Edition, John Wiley, New York.
[19]  Perkins, D.H. (1987) Introduction to High Energy Physics. Addison-Wesley, Menlo Park.
[20]  Pal, P.B. (2011) Dirac, Majorana, and Weyl Fermions. American Journal of Physics, 79, 485. https://doi.org/10.1119/1.3549729
[21]  Berestetskii, V.B., Lifshitz, E.M. and Pitaevskii, L.P. (1982) Quantum Electrodynamics. Pergamon, Oxford. https://doi.org/10.1016/B978-0-08-050346-2.50020-9
[22]  Hagiwara, K., Peccei, R.D., Zeppenfeld, D. and Hikaso, K. (1987) Probing the Weak Boson Sector in e e?→W W?. Nuclear Physics B, 282, 253-307.
https://doi.org/10.1016/0550-3213(87)90685-7
[23]  Abazov, V.M., et al. (2012) Limits on Anomalous Trilinear Gauge Boson Couplings from WW, WZ and Wγ Production in Collisions at √s = 1.96TeV. Physics Letters B, 718, 451-459.
[24]  Aad, G., et al. (2012) Measurement of the WW Cross Section in pp Collisions with the ATLAS Detector and Limits on Anomalous Gauge Couplings. Physics Letters B, 712, 289-308.
[25]  Dirac, P.A.M. (1928) Quantum Theory of the Electron. Proceedings of the Royal Society of London. Series A, 117, 610-624.
[26]  Darwin, C.G. (1928) The Wave Equations of the Electron. Proceedings of the Royal Society of London. Series A, 118, 654.

Full-Text


comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413