All Title Author
Keywords Abstract


Effect of Langmuir Monolayer of Bovine Serum Albumin Protein on the Morphology of Calcium Carbonate

DOI: 10.4236/oalib.1105796, PP. 1-9

Subject Areas: Composite Material

Keywords: Bovine Serum Albumin Protein

Full-Text   Cite this paper   Add to My Lib

Abstract

In this paper we used BSA Langmuir monolayer as templates to study the effect of solute concentration on regulated biomineralization of calcium carbonate. During the crystallization process, it is found that the morphology of the calcium carbonate can be strongly affected by the solute concentration in presence of BSA Langmuir monolayer. X-ray Diffraction (XRD) results show that the crystal of calcium carbonate formed is all the calcite phase with a higher orientation. SEM images show that the morphology of calcite is time-dependent at different solute concentrations. The effect of solute concentration on morphology was discussed and the interaction of particles with bovine serum albumin Langmuir monolayers was proposed.

Cite this paper

Xue, Z. and Xue, N. (2020). Effect of Langmuir Monolayer of Bovine Serum Albumin Protein on the Morphology of Calcium Carbonate. Open Access Library Journal, 7, e5796. doi: http://dx.doi.org/10.4236/oalib.1105796.

References

[1]  Donners, J.J.J., Nolte, R.J.M. and Sommerdijk, N.A.J.M. (2002) A Shape-Persistent Polymeric Crystallization Template for CaCO3. Journal of the American Chemical Society, 124, 9700-9701. https://doi.org/10.1021/ja0267573
[2]  Fu, G., Valiyaveettil, S., Wopenka, B. and Morse, D.E. (2005) CaCO3 Biomineralization: Acidic 8-kDa Proteins Isolated from Aragonitic Abalone Shell Nacre Can Specifically Modify Calcite Crystal Morphology. Biomacromolecules, 6, 1289-1298. https://doi.org/10.1021/bm049314v
[3]  Liang, P., Shen, Q., Zhao, Y., Zhou, Y., Wei, H., Lieberwirth, I., Huang, Y., Wang, D. and Xu, D. (2004) Petunia-Shaped Superstructures of CaCO3 Aggregates Modulated by Modified Chitosan. Langmuir, 20, 10444-10448. https://doi.org/10.1021/la0481602
[4]  Macaskie, L.E., Yong, P., Paterson-Beedle, M., Thackray, A.C., Marquis, P.M., Sammons, R.L., Nott, K.P. and Hall, L.D. (2005) A Novel Non Line-of-Sight Method for Coating Hydroxyapatite onto the Surfaces of Support Materials by Biomineralization. Journal of Biotechnology, 118, 187-200. https://doi.org/10.1016/j.jbiotec.2005.03.006
[5]  Kokubo, T. (2005) Design of Bioactive Bone Substitutes Based on Biomineralization Process. Materials Science and Engineering: C, 25, 97-104. https://doi.org/10.1016/j.msec.2005.01.002
[6]  Fan, Y.W., Duan, K. and Wang, R.Z. (2005) A Composite Coating by Electrolysis-Induced Collagen Self-Assembly and Calcium Phosphate Mineralization. Biomaterials, 26, 1623-1632. https://doi.org/10.1016/j.biomaterials.2004.06.019
[7]  Nancollas, G.H. and Wu, W. (2000) Biomineralization Mechanisms: A Kinetics and Interfacial Energy Approach. Journal of Crystal Growth, 211, 137-142. https://doi.org/10.1016/S0022-0248(99)00816-7
[8]  Eiden-A?mann, S., Viertelhaus, M., Hei?, A., Hoetzer, K.A. and Felsche, J. (2002) The Influence of Amino Acids on the Biomineralization of Hydroxyapatite in Gelatin. Journal of Inorganic Biochemistry, 91, 481-486. https://doi.org/10.1016/S0162-0134(02)00481-6
[9]  Falini, G., Gazzano, M. and Ripamonti, A. (1996) Magnesium Calcite Crystallizatin from Water-Alcohol Mixtures. Chemical Communications, 9, 1037-1038. https://doi.org/10.1039/CC9960001037
[10]  Xie, A.J., Yuan, Z.W. and Shen, Y.H. (2005) Biomimetic Morphogenesis of Calcium Carbonate in the Presence of a New Amino-Carboxyl-Chelating-Agent. Journal of Crystal Growth, 276, 265-274. https://doi.org/10.1016/j.jcrysgro.2004.11.376
[11]  Nebel, H. and Epple, M. (2008) Continuous Preparation of Calcite, Aragonite and Vaterite, and of Magnesium-Substituted Amorphous Calcium Carbonate (Mg-ACC). Zeitschrift für anorganische Chemie, 634, 1439-1443. https://doi.org/10.1002/zaac.200800134
[12]  Han, Y.J. and Aizenberg, J. (2003) Effect of Magnesium Ions on Oriented Growth of Calcite on Carboxylic Acid Functionalized Self-Assembled Monolayer. Journal of the American Chemical Society, 125, 4032-4033. https://doi.org/10.1021/ja034094z
[13]  Wong, K.K.W. and Mann, S. (1998) Small Scale Structures in Biomineralization and Biomimetic Materials Chemistry. Current Opinion in Colloid & Interface Science, 3, 63-68. https://doi.org/10.1016/S1359-0294(98)80043-5
[14]  Han, Y.J. and Aizenberg, J. (2003) Effect of Magnesium Ions on Oriented Growth of Calcite on Carboxylic Acid Functionalized Self-Assembled Monolayer. Journal of the American Chemical Society, 125, 4032-4033. https://doi.org/10.1021/ja034094z
[15]  Davis, K.J., Dove, P.M. and De Yoreo, J.J. (2000) The Role of Mg2 as an Impurity in Calcite Growth. Science, 290, 1134. https://doi.org/10.1126/science.290.5494.1134
[16]  Wada, N., Yamashita, K. and Umegaki, T. (1999) Effects of Carboxylic Acids on Calcite Formation in the Presence of Mg2 Ions. Journal of Colloid and Interface Science, 212, 357-364. https://doi.org/10.1006/jcis.1998.6067
[17]  Jiao, Y.F., Feng, Q.L. and Li, X.M. (2006) The Co-Effect of Collagen and Magnesium Ions on Calcium Carbonate Biomineralization. Materials Science and Engineering: C, 26, 648-652. https://doi.org/10.1016/j.msec.2005.08.038
[18]  Xie, A.J., Shen, Y.H., Li, X.Y., Yuan, Z.W., Qiu, L.G., Zhang, C.Y. and Yang, Y.F. (2007) The Role of Mg2 and Mg2 /Amino Acid in Controlling Polymorph and Morphology of Calcium Carbonate Crystal. Materials Chemistry and Physics, 101, 87-92. https://doi.org/10.1016/j.matchemphys.2006.02.019
[19]  Zhu, L.Y., Zhao, Q.R., Zheng, X.W. and Xie, Y.J. (2006) Formation of Star-Shaped Calcite Crystals with Mg2 Inorganic Mineralizer without Organic Template. Journal of Solid State Chemistry, 179, 1247-1252. https://doi.org/10.1016/j.jssc.2006.01.036
[20]  Gong, H.F., Yang, Y., Pluntke, M., Marti, O., Majer, Z., Sewald, N. and Volkmer, D. (2014) Calcium Carbonate Crystal Growth Beneath Langmuir Monolayers of Acidic β-Hairpin Peptides. Dalton Transactions, 43, 16857-16871. https://doi.org/10.1039/C4DT01154F
[21]  Falini, G., Albeck, S., Weiner, S. and Addadi, L. (1996) Control of Aragonite or Calcite Polymorphism by Mollusk Shell Macromolecules. Science, 271, 67-69. https://doi.org/10.1126/science.271.5245.67
[22]  Falini, G., Gazzano, M. and Ripamonti, A. (1994) Crystallization of Calcium Carbonate in Presence of Magnesium and Polyelectrolytes. Journal of Crystal Growth, 137, 577-584. https://doi.org/10.1016/0022-0248(94)91001-4
[23]  Sugawara, A. and Kato, T. (2000) Aragonite CaCO3 Thin-Film Formation by Cooperation of Mg2 and Organic Polymer Matrices. Chemical Communications, No. 6, 487-488. https://doi.org/10.1039/a909566g
[24]  Meldruma, F.C. and Hyde, S.T. (2001) Morphological Influence of Magnesium and Organic Additives on the Precipitation of Calcite. Journal of Crystal Growth, 231, 544-558. https://doi.org/10.1016/S0022-0248(01)01519-6
[25]  Kitano, Y. (1962) The Behavior of Various Inorganic Ions in the Separation of Calcium Carbonate from a Bicarbonate Solution. Bulletin of the Chemical Society of Japan, 35, 1973-1980. https://doi.org/10.1246/bcsj.35.1973
[26]  Noyes, R.M. (1962) Thermodynamics of Ion Hydration as a Measure of Effective Dielectric Properties of Water. Journal of the American Chemical Society, 84, 513-522. https://doi.org/10.1021/ja00863a002
[27]  Sánchez-González, J., Ruiz-García, J. and Gálvez-Ruiz, M.J. (2003) Langmuir-Blodgett Films of Biopolymers: A Method to Obtain Protein Multilayers. Journal of Colloid and Interface Science, 267, 286-293. https://doi.org/10.1016/S0021-9797(03)00754-9
[28]  Mann, S., Heywood, B.R., Rajam, S. and Birchall, J.D. (1988) Controlled Crystallization of CaCO3 under Stearic Acid Monolayers. Nature (London), 334, 692-695. https://doi.org/10.1038/334692a0
[29]  Xue, Z.H., Hu, B.B., Dai, S.X. and Du, Z.L. (2012) Crystallization and Self-Assembly of Flowerlike Superstructures of Calcium Carbonate Regulated by Pepsin Langmuir Monolayers. Materials Chemistry and Physics, 136, 771-777. https://doi.org/10.1016/j.matchemphys.2012.07.054
[30]  Yu, J.G., Tang, H., Cheng, B. and Zhao, X.J. (2004) Morphological Control of Calcium Oxalate Particles in the Presence of Poly-(styrene-alt-maleic acid). Journal of Solid State Chemistry, 177, 3368-3374. https://doi.org/10.1016/j.jssc.2004.06.007
[31]  Zhang, D.B., Qi, L.M., Ma, J.M. and Cheng, H.M. (2002) Morphological Control of Calcium Oxalate Dihydrate by a Double-Hydrophilic Block Copolymer. Chemistry of Materials, 14, 2450-2457. https://doi.org/10.1021/cm010768y
[32]  Xue, Z.H., Hu, B.B., Dai, S.X. and Du, Z.L. (2015) Transformation of Amorphous Calcium Carbonate to Rod-Like Single Crystal Calcite via “Copying” Collagen Template. Materials Science and Engineering: C, 55, 506-511. https://doi.org/10.1016/j.msec.2015.05.079
[33]  Fernandez-Diaz, L., Putnis, A., Prieto, M. and Putnis, C.V. (1996) The Role of Magnesium in the Crystallization of Calcite and Aragonite in a Porous Medium. Journal of Sedimentary Research, 66, 482-491. https://doi.org/10.1306/D4268388-2B26-11D7-8648000102C1865D
[34]  Raz, S., Hamilton, P.C., Wilt, F.H., Weiner, S. and Addadi, L. (2003) The Transient Phase of Amorphous Calcium Carbonate in Sea Urchin Larval Spicules: The Involvement of Proteins and Magnesium Ions in Its Formation and Stabilization. Advanced Functional Materials, 13, 480-486. https://doi.org/10.1002/adfm.200304285
[35]  Liu, X.Y. and Lim, S.W. (2003) Templating and Supersaturation-Driven Anti-Templating: Principles of Biomineral Architecture. Journal of the American Chemical Society, 125, 888-895. https://doi.org/10.1021/ja020355d

Full-Text


comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

微信:OALib Journal