全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

Relative Spatial Accuracy Evaluation of the Shuttle Radar Topography Mapping (SRTM15 V2.0) Dataset on the Cameroon Continental Shelf

DOI: 10.4236/oalib.1105656, PP. 1-21

Subject Areas: Natural Geography

Keywords: Accuracy, Bathymetry, Campus Cameroun, Continental Shelf, Error Distance, Global Terrain Model, Isobaths, Positional Accuracy, Satellite Altimetry, SRTM15 V2.0

Full-Text   Cite this paper   Add to My Lib

Abstract

This study presents a comparison between two bathymetric datasets covering the continental shelf of Cameroon. One of these datasets, Campus Cameroun, is based on a specific single-beam echosounder survey used in an authoritative study. The other is an excerpt of the SRTM15 V2.0,—free and open Global Bathymetry and Elevation Data model which provides background information for Google Earth, Google Maps, etc.—whose ocean bathymetry is based on a combination of satellite altimetry and echosounder data compiled from various sources. In the absence of multibeam bathymetric data for this area, this article assesses the local performance of the SRTM15 V2.0 by evaluating its relative positional accuracy with the Campus Cameroun bathymetric dataset, its completeness and, therefore, determines its suitability for geomorphological studies.

Cite this paper

Foonde, J. M. (2019). Relative Spatial Accuracy Evaluation of the Shuttle Radar Topography Mapping (SRTM15 V2.0) Dataset on the Cameroon Continental Shelf. Open Access Library Journal, 6, e5656. doi: http://dx.doi.org/10.4236/oalib.1105656.

References

[1]  Smith, W.H.F. and Sandwell, D.T. (1997) Global Seafloor Topography from Satellite Altimetry and Ship Depth Soundings, Science, 277, 1957-1962.
https://doi.org/10.1126/science.277.5334.1956
[2]  Laughton, A. and Shipman, S. (2000) Historical Methods of Depth Measurement. In: Continental Shelf Limits: The Scientific and Legal Interface, Oxford University Press, Oxford, 124-138.
[3]  Clarke, J.H. (2000) Present-Day Methods of Depth Measurement. In: Cook and Carleton, Eds., Continental Shelf Limits: The Scientific and Legal Interface, Oxford University Press, Oxford, 139-158.
[4]  Byrnes, M.R., Baker, J.L. and Li, F. (2002) Quantifying Potential Measurement Errors and Uncertainties Associated with Bathymetric Change Analysis. ERDC/CHL CHETN-IV-50 September.
[5]  Harris, P., Macmillan-Lawler, M., Rupp, J. and Baker, E. (2014) Geomorphology of the Oceans. Marine Geology, 352, 4-24.
https://doi.org/10.1016/j.margeo.2014.01.011
[6]  Jakobsson, M., Mayer, L. and Monahan, D. (2015) Arctic Ocean Bathymetry: A Necessary Geospatial Framework. Arctic, 68, 41-47.
https://doi.org/10.14430/arctic4451
[7]  Monahan, D. (2015) Altimetry and the Law of the Sea Definition of the Continental Shelf. Global Bathymetry for Oceanography, Geophysics and Climatology. Altimetry and UNCLOS.
[8]  Lecours, V., Dolan, M., Micallef, A. and Lucieer, V. (2016) A Review of Marine Geomorphometry, the Quantitative Study of the Seafloor. Hydrology and Earth System Sciences, 20, 3207-3244. https://doi.org/10.5194/hess-20-3207-2016
[9]  Crosnier, A. (1964) Fonds de pêche le long des cotes de la République Fédérale du Cameroun, cahiers 0.r.s.t.o.m. océanographie n° spécial.
[10]  Giresse, P., Megope Foonde, J., Ngueutchoua, G., Aloisi, J., Kuété, M. and Monteillet, J. (1996) Carte sédimentologique du plateau continental du Cameroun et notice explicative 111, Orstom, Paris.
[11]  Katsuto, U. (2014) Compilation and Validation of Bathymetric Data for the South China Sea with an Emphasis on Shallow Region. Engineering Sciences Reports, Kyushu University, 35, 7-13.
[12]  Marks, K.M. and Smith, W.H.F. (2006) An Evaluation of Publicly Available Global Bathymetry Grids. Marine Geophysical Researches, 27, 19-34.
https://doi.org/10.1007/s11001-005-2095-4
[13]  Ryan, W.B.F., Carbotte, S.M., Coplan, J.O., O’Hara, S., Melkonian, A., Arko, R., Weissel, R.A., Ferrini, V., Goodwillie, A., Nitsche, F.J., Bonczkowski, J. and Zemsky, R. (2009) Global Multi-Resolution Topography Synthesis. Geochemistry, Geophysics, Geosystems, 10, Q03014. https://doi.org/10.1029/2008GC002332
[14]  Congalton, R. (2001) Accuracy Assessment and Validation of Remotely Sensed and Other Spatial Information. International Journal of Wildland Fire, 10, 321-328.
https://doi.org/10.1071/WF01031
[15]  Jakobsson, M., Calder, B. and Mayer, L. (2002) On the Effect of Random Errors in Gridded Bathymetric Compilations. Journal of Geophysical Research, 107, ETG 14-1-ETG 14-11. https://doi.org/10.1029/2001JB000616
[16]  Jakobsson, M., Armstrong, A., Calder, B., Huff, L., Mayer, L. and Ward, L. (2005) On the Use of Historical Bathymetric Data to Determine Changes in Bathymetry an Analysis of Errors and Application to Great Bay Estuary, NH. International Hydrographic Review, 6, 1-17.
[17]  Pe’eri, S., et al. (2014) Satellite Remote Sensing as a Reconnaissance Tool for Assessing Nautical Chart Adequacy and Completeness. Marine Geodesy, 37, 293-314.
https://doi.org/10.1080/01490419.2014.902880
[18]  Harris, P. and Macmillan-Lawler, M. (2016) Global Overview of Continental Shelf Geomorphology Based on the SRTM30_PLUS 30-Arc Second Database. In: Finkle, C.W. and Makowski, C., Eds., Emerging Mapping Techniques for Autonomous Underwater Vehicles (AUVs), Springer, Berlin, 169-190.
https://doi.org/10.1007/978-3-319-25121-9_7
[19]  Olson, C.J., Becker, J.J. and Sandwell, D.T. (2016) SRTM15 PLUS: Data Fusion of Shuttle Radar Topography Mission (SRTM) Land Topography with Measured and Estimated Seafloor Topography (NCEI Accession 0150537).
[20]  Ariza Lopez, F.J. and Atkinson Gordo, A.D. (2008) Analysis of Some Positional Accuracy Assessment Methodologies. Journal of Surveying Engineering, 134, 45-54.
[21]  Nikolakopoulos, K.G., Kamaratakis, E.K. and Chrysoulakis, N. (2006) SRTM vs. ASTER Elevation Products. Comparison for Two Regions in Crete, Greece. International Journal of Remote Sensing, 27, 4819-4838.
https://doi.org/10.1080/01431160600835853
[22]  Hirt, C., Filmer, M.S. and Featherstone, W.E. (2010) Comparison and Validation of Recent Freely-Available ASTER-GDEM ver1, SRTM ver4.1 and GEODATA DEM-9S ver3 Digital Elevation Models over Australia. Australian Journal of Earth Sciences, 57, 337-347. https://doi.org/10.1080/08120091003677553
[23]  Abramova, A. (2012) Comparison and Evaluation of Global Publicly Available Bathymetry Grids in the Arctic. University of New Hampshire, Durham, 150 p.
[24]  Pulighe, G., Baiocchi, V. and Lupia, F. (2015) Horizontal Accuracy Assessment of Very High-Resolution Google Earth Images in the City of Rome, Italy. International Journal of Digital Earth, 9, 342-362. https://doi.org/10.1080/17538947.2015.1031716
[25]  Yap, L., Houetchak Kandé, L., Nouayou, R., Kamguia, J., Nasser Abdou Ngouh, N.A. and Makuate, M.B. (2018) Vertical Accuracy Evaluation of Freely Available Latest High-Resolution (30 m) Global Digital Elevation Models over Cameroon (Central Africa) with GPS/Leveling Ground Control Points. International Journal of Digital Earth, 12, 500-524. https://doi.org/10.1080/17538947.2018.1458163
[26]  Wells, D., Beck, N., Delikaraoglou, D., Kleusberg, A., Krakiwsky, E.J., Lachapelle, G., Langley, R.B., Nakiboglu, M., Schwarz, K.P., Tranquilla, J.M. and Vanicek, P. (1999) Guide to GPS Positioning. Canadian GPS Associates and University of New Brunswick, Fredericton.
[27]  Scripps Institute of Oceanography (2019) Satellite Geodesy: Extract Topography from Global 15 Arc Second Grid in ASCII XYZ-Format SRTM15 V2.0.
https://topex.ucsd.edu/cgi-bin/get_srtm15.cgi
[28]  NOAA (2007) Topographic and Bathymetric Data Considerations: Datums, Datum Conversion Techniques, and Data Integration, Part II of a Roadmap to a Seamless Topobathy Surface. Technical Report, NOAA/CSC/20718-PUB.
[29]  Becker, J.J. and Sandwell, D.T. (2012) Development of Global Bathymetry and Topography at 15 Arc Seconds. American Geophysical Union, Fall Meeting.
[30]  Tozer, B., Sandwell, D.T., Smith, W.H.F., Olson, C., Beale, J.R. and Wessel, P. (2019) Global Bathymetry and Topography at 15 Arc Seconds: SRTM15. Earth and Space Science. https://doi.org/10.1029/2019EA000658
[31]  Smith, W.H.F. (1993) On the Accuracy of Digital Bathymetry Data. Journal of Geophysical Research, 98, 9591-9603. https://doi.org/10.1029/93JB00716
[32]  Amante, C. and Eakins, B.W. (2009) ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. NOAA Technical Memorandum NESDIS, NGDC-24, 19 p.
[33]  Goodchild, M.F. and Gopal, S. (1989) The Accuracy of Spatial Databases. Taylor and Francis, London, 290 p.
[34]  Becker, J.J., Sandwell, D.T., Smith, W.H.F., Braud, J. , Binder, B., Depner, J., Fabre, D., Factor, J., Ingalls, S., Kim, S.-H., Ladner, R., Marks, K., Nelson, S., Pharaoh, A., Sharman, G., Trimmer, R., Rosenburg, J.V., Wallace, G. and Weatherall, P. (2009) Global Bathymetry and Elevation Data at 30 Arc Seconds Resolution: SRTM15 V2.0. Marine Geodesy, 32, 355-371. https://doi.org/10.1080/01490410903297766
[35]  Zhang, J. and Goodchild, M.F. (2002) Uncertainty in Geographical Information. CRC Press, Boca Raton. https://doi.org/10.4324/9780203471326
[36]  Jakobsson, M., Calder, B. and Mayer, L. (2002) On the Effect of Random Errors in Gridded Bathymetric Compilations. Journal of Geophysical Research, 107, 2358.
https://doi.org/10.1029/2001JB000616
[37]  Weatherall, P., Marks, K.M., Jakobsson, M., Schmitt, T., Tani, S., Arndt, J.E., Rovere, M., Chayes, D., Vicki Ferrini, V. and Wigley, R. (2015) A New Digital Bathymetric Model of the World’s Oceans. Earth and Space Science, 2, 331-345.
https://doi.org/10.1002/2015EA000107
[38]  Thapa, K. (1992) Accuracy of Spatial Data Used in Information Geographic Systems. Photogrammetric Engineering and Remote Sensing, 58, 835-841.
[39]  Robinson, T.P. and Metternicht, G. (2006) Testing the Performance of Spatial Interpolation Techniques for Mapping Soil Properties. Computers and Electronics in Agriculture, 50, 97-108. https://doi.org/10.1016/j.compag.2005.07.003
[40]  Burroughs, P.A. (1986) Principles of Geographical Information Systems for Land Resources Assessment. Clarendon Press, Oxford.
[41]  Longley, P., Goodchild, M., Maguire, D. and Rhind, D. (2015) Geographic Information Science and Systems. 4th Edition, Wiley, Hoboken.
[42]  Li, J. and Heap, A.D. (2011) A Review of Comparative Studies of Spatial Interpolation Methods in Environmental Sciences: Performance and Impact Factors. Ecological Informatics, 6, 228-241. https://doi.org/10.1016/j.ecoinf.2010.12.003
[43]  Siljeg, A., Lozic, S. and Siljeg, S. (2015) A Comparison of Interpolation Methods on the Basis of Data Obtained from a Bathymetric Survey of Lake Vrana, Croatia. Hydrology and Earth System Sciences, 19, 3653-3666.
https://doi.org/10.5194/hess-19-3653-2015
[44]  Jakobsson, M., Calder, B., Mayer, L. and Armstrong, A. (2006) The Uncertainty of a Bathymetric Contour: Implications for the Cut-Off Line. Accuracies and Uncertainties in Maritime Boundaries and Outer Limits, ABLOS Conference [CD-ROM], Int. Hydrol. Bur., Monaco, 2001.
http://citeseerx.ist.psu.edu/viewdoc/download?doi
=10.1.1.365.1000&rep=rep1&type=pdf
[45]  Tobler, W.R. (1970) A Computer Movie Simulating Urban Growth in the Detroit Region. Economic Geography, 46, 234-240. https://doi.org/10.2307/143141
[46]  Anderson, D., Ames, D. and Yang, P. (2014) Quantitative Methods for Comparing Different Polyline Stream Network Models. Journal of Geographic Information System, 6, 88-98. https://doi.org/10.4236/jgis.2014.62010
[47]  Marks, K.M., Smith, W.H.F. and Sandwell, D.T. (2010) Evolution of Errors in the Altimetry Bathymetry Model Used by Google Earth and GEBCO. Marine Geophysical Research, 31, 223-238. https://doi.org/10.1007/s11001-010-9102-0
[48]  Wessel, P. and Smith, W.H.F. (1996) A Global, Self-Consistent, Hierarchical, High-Resolution Shoreline Database. Journal of Geophysical Research, 101, 8741-8743. https://doi.org/10.1029/96JB00104
[49]  Google Earth Pro, V 7.3.2.5776, Image Landsat/Copernicus, Data: SIO, NOAA, U.S. Navy, NGA, GEBCO, Image IBCAO, March 5, 2019.
https://www.google.com/earth/
[50]  Wolfl, A.-C., Snaith, H., Amirebrahimi, S., Devey, C.W., Dorschel, B., Ferrini, V., Huvenne, V.A.I., Jakob-sson, M., Jencks, J., Johnston, G., Lamarche, G., Mayer, L., Millar, D., Pedersen, T.H., Picard, K., Reitz, A., Schmitt, T., Visbeck, M., Weatherall, P. and Wigley, R. (2019) Seafloor Mapping—The Challenge of a Truly Global Ocean Bathymetry. Frontiers in Marine Science, 6, 283.
https://doi.org/10.3389/fmars.2019.00283
[51]  Wright, D.J. and Heyman, W.D. (2008) Introduction to the Special Issue: Marine and Coastal GIs for Geomorphology, Habitat Mapping, and Marine Reserves. Marine Geodesy, 31, 223-230.
https://doi.org/10.1080/01490410802466306

Full-Text


comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413