全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

Interacting Holographic Dark Energy in Bianchi Type-V Universe with Variable Deceleration Parameter

DOI: 10.4236/oalib.1105498, PP. 1-5

Subject Areas: Theoretical Physics, Modern Physics

Keywords: Bianchi Type-V Universe, Holographic Dark Energy, Interacting Dark Fluids, Variable Deceleration Parameter

Full-Text   Cite this paper   Add to My Lib

Abstract

The present study deals with spatially homogeneous and anisotropic Bianchi Type-V universe filled with interacting dark matter and holographic dark energy. The exact solutions of Einstein’s equations are obtained by using the variable deceleration parameter in the form a(t)=(sinh(at))1/n (Chawla et al. [1]). The physical properties of the model are obtained and discussed in details.

Cite this paper

Mete, V. G. , Bokey, V. D. and Bawane, V. S. (2019). Interacting Holographic Dark Energy in Bianchi Type-V Universe with Variable Deceleration Parameter. Open Access Library Journal, 6, e5498. doi: http://dx.doi.org/10.4236/oalib.1105498.

References

[1]  Chawla, C., Mishra, R.K. and Pradhan, A. (2012) Anisotropic Bianchi-I Cosmological Models in String Cosmology with Variable Deceleration Parameter. Romanian Journal of Physics, 58, 1000. arXiv:1203.4014 [physics.gen-ph]
[2]  Perlmutter, S.J., et al. (1998) Discovery of a Supernova Explosion at Half the Age of the Universe. Nature, 391, 51-54. https://doi.org/10.1038/34124
[3]  Perlmutter, S.J., et al. (1999) Measurements of Ω and Λ from 42 High-Redshift Supernovae. The Astrophysical Journal, 517, 565-586.
https://doi.org/10.1086/307221
[4]  Riess, A.G., et al. (1998) Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. The Astronomical Journal, 116, 1009-1038. https://doi.org/10.1086/300499
[5]  Riess, A.G., et al. (2004) Type Ia Supernova Discoveries at z > 1 from the Hubble Space Telescope: Evi-dence for Past Deceleration and Constraints on Dark Energy Evolution. The Astrophysical Journal, 607, 665-687. https://doi.org/10.1086/383612
[6]  Astier, P., et al. (2006) The Supernova Legacy Survey: Measurement of ?M, ?Λ and from First Year Data Set. As-tronomy & Astrophysics, 447, 31-48.
https://doi.org/10.1051/0004-6361:20054185
[7]  Spergel, D.N., et al. (2006) Three-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Implications for Cosmology. The Astrophysical Journal, 170, 377. https://doi.org/10.1086/513700
[8]  Davis, T.M., et al. (2007) Scrutinizing Exotic Cos-mological Models Using Essence Supernova Data Combined With Other Cosmological Probes. The Astrophysical Journal, 666, 716-725. https://doi.org/10.1086/519988
[9]  Bennett, C.L., Halpern, M., Hinshaw, G., Jarosik, N., Kogut, A., et al. (2003) First Year Wilkinson Microwave Anisotropy Probe (WMAP) Ob-servations: Preliminary Maps and Basic Results. The Astrophysical Journal, 148, 1-43.
https://doi.org/10.1086/377253
[10]  Spergel, D.N., Verde, L., Peiris, H.V., Komatsu, E., Nolta, M.R., et al. (2003) First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations Determination of Cosmological Parameters. The Astrophysical Journal, 148, 175-194.
https://doi.org/10.1086/377226
[11]  Verde, L., et al. (2002) The 2dF Galaxy Redshift Survey: The Bias of Galaxies and the Density of the Universe. Monthly Notices of the Royal Astronomical Society, 335, 432-440. https://doi.org/10.1046/j.1365-8711.2002.05620.x
[12]  Hawkins, E., et al. (2003) The 2dF Galaxy Redshift Survey: Correlation Functions, Peculiar Velocities and the Matter Density of the Universe. Monthly Notices of the Royal Astronomical Society, 346, 78-96.
https://doi.org/10.1046/j.1365-2966.2003.07063.x
[13]  Abazajian, K., et al. (2003) The First Data Release of The Sloan Digital Sky Survey. The Astronomical Journal, 126, 2081-2086. https://doi.org/10.1086/378165
[14]  Abazajian, K., et al. (2004) The Second Data Release of the Sloan Digital Sky Survey. The Astronomical Journal, 128, 502-512.
[15]  Abazajian, K., et al. (2004) The Third Data Release of The Sloan Digital Sky Survey. The Astronomical Journal, 129, 1755-1759.
[16]  Tegmark, M., et al. (2004) Cosmological Parameters from SDSS and WMAP. Physical Review D, 69, Article ID: 103501. https://doi.org/10.1103/PhysRevD.69.103501
[17]  Weinberg, S. (1989) The Cosmological Constant Problem. Review of Modern Physics, 61, 1. https://doi.org/10.1103/RevModPhys.61.1
[18]  Carroll, S.M. (2001) The Cosmological Constant. Living Reviews in Relativity, 4, 1.
https://doi.org/10.12942/lrr-2001-1
[19]  Peebles, P.J.E. and Ratra, B. (2003) The Cosmological Constant and Dark Energy. Reviews of Modern Physics, 75, 559. https://doi.org/10.1103/RevModPhys.75.559
[20]  Padmanabhan, T. (2003) Cosmological Constant: The Weight of the Vacuum. Physics Reports, 380, 235-320. https://doi.org/10.1016/S0370-1573(03)00120-0
[21]  Koivisto, T. and Mota, D.F. (2008) Anisotropic Dark Energy: Dynamics of the Background and Perturbations. Journal of Cosmology and Astroparticle Physics, 2008, 18. https://doi.org/10.1088/1475-7516/2008/06/018
[22]  Cohen, A.G., Kaplan, D.B. and Nel-son, A.E. (1999) Effective Field Theory, Black Holes, and the Cosmological Constant. Physics Review Letters, 82, 4971-4974.
https://doi.org/10.1103/PhysRevLett.82.4971
[23]  Horava, P. and Minic, D. (2000) Probable Values of the Cosmological Constant in a Holographic Theory. Physical Review Letters, 85, 1610.
https://doi.org/10.1103/PhysRevLett.85.1610
[24]  Thomas, S. (2002) Holography Stabilizes the Vacuum Energy. Physical Review Letters, 89, Article ID: 081301. https://doi.org/10.1103/PhysRevLett.89.081301
[25]  Li, M. (2004) A Model of Holographic Dark Energy. Physics Letters B, 603, 1-5.
https://doi.org/10.1016/j.physletb.2004.10.014
[26]  Hooft, G. (1995) Dimensional Reduction in Quantum Gravity. General Relativity and Quantum Cosmology (gr-qc), 9310026.
[27]  Coles, P. and Eills, G.F.R. (1994) The Case for an Open Universe. Nature, 370, 609-615. https://doi.org/10.1038/370609a0
[28]  Zhang, X. and Wu, F.Q. (2005) Con-straints on Holographic Dark Energy from Type Ia Supernova Observations. Physical Review D, 72, Article ID: 043524.
https://doi.org/10.1103/PhysRevD.72.043524
[29]  Enqvist, K., Hannestad, S. and Sloth, M.S. (2005) Searching for a holographic connection between Dark Energy and the Low/CMB Multipoles. Journal of Cosmology and Astroparticle Physics, 2005, 4. https://doi.org/10.1088/1475-7516/2005/02/004
[30]  Shen, J., Wang, B., Abdalla, E. and Su, R.-K. (2005) Constraints on the Dark Energy from the Holographic Connection to the Small l CMB Suppression. Physics Letters B, 609, 200-205. https://doi.org/10.1016/j.physletb.2005.01.051
[31]  Chang, Z., Wu, F.-Q. and Zhang, X. (2006) Constraints on Holographic Dark Energy from X-Ray Gas Mass Fraction of Galaxy Clusters. Physics Letters B, 633, 14-18. https://doi.org/10.1016/j.physletb.2005.10.095
[32]  Carvalho, F.C. and Saa, A. (2004) Nonminimal Coupling, Exponential Potentials and the ω<?1 Regime of Dark Energy. Physical Review D, 70, Article ID: 087302.
https://doi.org/10.1103/PhysRevD.70.087302
[33]  Huang, Q.-G. and Li, M. (2004) The Holographic Dark Energy in a Non-Flat Universe. Journal of Cosmology and Astro-particle Physics, 2004, 13.
https://doi.org/10.1088/1475-7516/2004/08/013
[34]  Gong, Y.-G. (2004) Extended Holographic Dark Energy. Physical Review D, 70, Article ID: 064029. https://doi.org/10.1103/PhysRevD.70.064029
[35]  Gong, Y.-G. and Zhang, Y.-Z. (2005) Holography and Holographic Dark Energy Model. Classical and Quantum Gravity, 22, 4895-4902.
https://doi.org/10.1088/0264-9381/22/22/014
[36]  Pavon, D. and Zimdahl, W. (2005) Holographic Dark Energy and Cosmic Coincidence. Physics Letters B, 628, 206-210.
https://doi.org/10.1016/j.physletb.2005.08.134
[37]  Wang, B., Gong, Y.G. and Abdalla, E. (2005) Transition of the Dark Energy Equation of State in an Interacting Holographic Dark Energy Model. Physics Letters B, 624, 141-146. https://doi.org/10.1016/j.physletb.2005.08.008
[38]  Perivolaropoulos, L. (2005) Crossing the Phantom Divide Barrier with Scalar Tensor Theories. Journal of Cosmology and As-troparticle Physics, 2005, 1.
https://doi.org/10.1088/1475-7516/2005/10/001
[39]  Nojiri, S. and Odintsov, S.D. (2006) Unifying Phantom Inflation with Late-Time Acceleration: Scalar Phantom-Non-Phantom Transition Model and Generalized Holographic Dark Energy. General Relativity and Gravitation, 38, 1285-1304.
https://doi.org/10.1007/s10714-006-0301-6
[40]  Guberina, B., Horvat, R. and Nikolic, H. (2005) Generalized Holographic Dark Energy and the IR Cutoff Problem. Physics Review D, 72, Article ID: 125011.
https://doi.org/10.1103/PhysRevD.72.125011
[41]  Guberina, B., Horvat, R. and Nikoli?, H. (2006) Dynamical Dark Energy with a Constant Vacuum Energy Density. Physics Letters B, 636, 80-85.
https://doi.org/10.1016/j.physletb.2006.03.041
[42]  Guo, Z. K., Ohta, N. and Zhang, Y.Z. (2005) Parameterization of Quintessence and Its Potential. Physical Review D, 72, Article ID: 023504.
https://doi.org/10.1103/PhysRevD.72.023504
[43]  Guo, Z.K., Ohta, N. and Tsujikawa, S. (2007) Probing the Coupling between Dark Components of the Universe. Physics Review D, 76, Article ID: 023508.
https://doi.org/10.1103/PhysRevD.76.023508
[44]  Guo, Z.K., Ohta, N. and Zhang, Y.Z. (2007) Parametrizations of the Dark Energy Density and Scalar Potentials. Modern Physics Letters A, 22, 883-890.
https://doi.org/10.1142/S0217732307022839
[45]  Hu, B. and Ling, Y. (2006) Interacting Dark Energy, Holographic Principle, and Coincidence Problem. Physical Review D, 73, Article ID: 123510.
https://doi.org/10.1103/PhysRevD.73.123510
[46]  Li, H., Guo, Z.K. and Zhang, Y.Z. (2006) A Tracker Solution for a Holographic Dark Energy Model. International Journal of Modern Physics D, 15, 869-877.
https://doi.org/10.1142/S0218271806008577
[47]  Setare, M.R. (2006) Interacting Holographic Dark Energy Model in Non-Flat Universe. Physics Letters B, 642, 1-4. https://doi.org/10.1016/j.physletb.2006.09.027
[48]  Setare, M.R. (2007) The Holographic Dark Energy in Non-Flat Brans—Dicke Cosmology. Physics Letters B, 644, 99-103.
https://doi.org/10.1016/j.physletb.2006.11.033
[49]  Sadjadi, H.M. (2007) The Particle versus the Future Event Horizon in an Interacting Holographic Dark Energy Model. Journal of Cosmology and Astroparticle Physics, 2007, 26. https://doi.org/10.1088/1475-7516/2007/02/026
[50]  Banerjee, N. and Pavon, D. (2007) Holographic Dark Energy in Brans—Dicke Theory. Physics Letters B, 647, 477-481.
https://doi.org/10.1016/j.physletb.2007.02.035
[51]  Zimdahl, W. (2008) Dark Energy: A Unifying View. International Journal of Modern Physics D, 17, 651-658. https://doi.org/10.1142/S0218271808012395
[52]  Sarkar, S. (2014) Holographic Dark En-ergy Model with Linearly Varying Deceleration Parameter and Generalised Chaplygin Gas Dark Energy Model in Bianchi Type-I Universe. Astrophysics and Space Science, 349, 985-993.
https://doi.org/10.1007/s10509-013-1684-y
[53]  Sarkar, S. (2014) Interacting Holographic Dark Energy with Variable Deceleration Parameter and Accreting Black Holes in Bianchi Type-V Universe. Astrophysics and Space Science, 352, 245-253. https://doi.org/10.1007/s10509-014-1876-0
[54]  Sarkar, S. (2014) Interacting Holographic Dark Energy with Variable Deceleration Parameter and Tachyon Scalar Field Dark Energy Model in LRS Bianchi Type-II Universe. Astrophysics and Space Science, 350, 821-829.
https://doi.org/10.1007/s10509-014-1786-1
[55]  Adhav, K.S. (2011) Statefinder Diagnostic for Variable Modified Chaplygin Gas in Bianchi Type-V Universe. Astrophysics and Space Science, 335, 611-617.
https://doi.org/10.1007/s10509-011-0773-z
[56]  Adhav, K.S. (2011) Statefinder Diagnostic for Modified Chaplygin Gas in Bianchi Type-V Universe. The European Physical Journal Plus, 126, 52.
https://doi.org/10.1140/epjp/i2011-11052-6
[57]  Pradhan, A., Amirhashchi, H. and Saha, B. (2011) Bianchi Type-I Anisotropic Dark Energy Model with Constant Deceleration Parameter. International Journal of Theoretical Physics, 50, 2923-2938. https://doi.org/10.1007/s10773-011-0793-z
[58]  Kumar, S. and Yadav, A.K. (2011) Some Bianchi Type-V Models of Accelerating Universe with Dark Energy. Modern Physics Letters A, 26, 647-659.
https://doi.org/10.1142/S0217732311035018
[59]  Pradhan, A. and Amirhashchi, H. (2011) Accelerating Dark Energy Models in Bianchi Type-V Spacetime. Modern Physics Letters A, 26, 2266-2275.
https://doi.org/10.1142/S0217732311036620
[60]  Adhav, K.S., Tayade, G.B. and Bansod, A.S. (2014) Interacting Dark Matter and Holographic Dark Energy in an Anisotropic Universe. Astrophysics and Space Science, 353, 249-257. https://doi.org/10.1007/s10509-014-2015-7
[61]  Som, S. and Sil, A. (2014) Interacting Holographic Dark Energy Models: A General Approach. Astrophysics and Space Science, 352, 867-875.
https://doi.org/10.1007/s10509-014-1926-7
[62]  Granda, L.N. and Oliverios, A. (2008) Infrared Cut-Off Proposal for the Holographic Density. Physics Letters B, 669, 275-277.
https://doi.org/10.1016/j.physletb.2008.10.017
[63]  Amendola, L., Campos, G.C. and Rosenfeld, R. (2007) Consequences of Dark Matter-Dark Energy Interaction on Cosmological Parameters Derived from Type Ia Supernova Data. Physical Review D, 75, Article ID: 083506.
https://doi.org/10.1103/PhysRevD.75.083506
[64]  Cai, R.-G. and Wang, A. (2005) Cosmology with Interaction between Phantom Dark Energy and Dark Matter and the Coincidence Problem. Journal of Cosmology and Astroparticle Physics, 2005, 2. https://doi.org/10.1088/1475-7516/2005/03/002
[65]  Pradhan, A., Jaiswal, R., Jotania, K. and Khare, R.K. (2012) Dark Energy Models with Anisotropic Fluid in Bianchi Type-VI0 Space-Time with Time Dependent Deceleration Parameter. Astrophysics and Space Science, 337, 401-413.
https://doi.org/10.1007/s10509-011-0835-2
[66]  Ade, P.A.R., et al. (2014) Plank 2013 Results XVI Cosmological Parameters. Astronomy and Astrophysics, 571, 1-66.
[67]  Riess, A.G., et al. (2007) New Hubble Space Telescope Discoveries of Type Ia Supernovae at z ≥ 1: Narrowing Constraints on the Early Behavior of Dark Energy. Astrophysical Journal, 659, 98-121. https://doi.org/10.1086/510378
[68]  Mete, V.G., et al. (2018) Interacting Dark Fluids In Bianchi Type-I Universe With Variable Deceleration Parameter. International Journal of Current Advanced Research, 7, 13609-13613.

Full-Text


comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413