All Title Author
Keywords Abstract

Publish in OALib Journal
ISSN: 2333-9721
APC: Only $99


Examining the Effectiveness of a Protected Areas Network in the Conservation of Kigelia africana under Climate Change by 2050 in Benin

DOI: 10.4236/oalib.1104326, PP. 1-16

Subject Areas: Ecosystem Science, Plant Science, Biodiversity, Agricultural Science, Environmental Sciences, Ecology

Keywords: Biodiversity, Ecological Niche, Maximum Entropy, GIS, Representative Concentration Pathways

Full-Text   Cite this paper   Add to My Lib


Sustainability of Kigelia africana species passes throughout their conservation. Protected area is recognised as the granary of species populations. Kigelia africana is an indigenous species and traditionally contributes to the resilience in term of health insurance, source of income, reduction of poverty and stability of the biodiversity. This study determines to find out 1) how Kigelia africana species populations’ distributions may be affected under future climate scenarios, and 2) how well protected areas contribute to the conservation of Kigelia africana plant species. Available bioclimatic and soil data layers were used for the modelling with maximum entropy approaches, and resulting maps were overlaid on the existing protected areas network. Results showed that species distribution remains mainly much stable and the relationships with protected areas networks suggest that protected portions of species distributions will also remain stable.

Cite this paper

Guidigan, M. L. G. , Azihou, F. , Okhimamhe, A. A. , Sinsin, B. , Usman, B. S. and Adet, L. (2018). Examining the Effectiveness of a Protected Areas Network in the Conservation of Kigelia africana under Climate Change by 2050 in Benin. Open Access Library Journal, 5, e4326. doi:


[1]  Balmford, A. and Albon, S.B.S. (1992) Correlates of Male Mating Success and Female Choice in a Lek-Breeding Antelope. Behavioral Ecology, No. 3, 112-123.
[2]  Marshall, A., Platts, P.J., Gereau, R.E., Kindeketa, W., Kang’ethe, S. and Marchant, R. (2012) The Genus Acacia (Fabaceae) in East Africa: Distribution, Biodiversity and the Protected Area Network. Plant Ecology Evlu, 145, 289-301.
[3]  Idohou, R., Assogbadjo, A.E., Kakai, R.G. and Peterson, A.T. (2016) Spatio-Temporal Dynamic of Suitable Areas for Species Conservation in West Africa: Eight Economically Important Wild Palms under Present and Future Climates. Agroforestry Systems, 91, 527-540.
[4]  Fandohan, B., Gouwakinnou, G.N., Fonton, N.H., Sinsin, B. and Liu, J. (2013) Impact of Climate Change on the Geographical Distrubution of Suitable Areas for Cultivation and Conservation of Underutilized Fruit Trees: Case Study of the Tamarind Tree in Benin. Biotechnologie, Agronomie, SociétéetEnvironnement, 17, 450-462.
[5]  Sofowora, A. (1980) The Present Status of Knowledge of the Plants Used in Traditional Medicine in Western Africa: A Medical Approach and a Chemical Evaluation. Journal of Ethnopharmacology, 2, 109-118.
[6]  Kaur, H., Shyam, R. and Amutha, R. (2011) Kigelia africana Fruit Carbon as a Low Cost Adsorbent for Removal of Copper (II) Ions from Aqueous Solution. Nature Environment and Pollution Technology, 10, 419-422.
[7]  van Zonneveld, M., Koskela, J., Vinceti, B. and Jarvis, A. (2009). Impact of Climate Change on the Distribution of Tropical Pines in Southeast Asia. Unasylva, 60, 24-29.
[8]  Guisan, A. and Zimmermann, N.E. (2000) Predictive Habitat Distribution Models in Ecology. Ecological Modelling, 135, 147-186.
[9]  Phillips, S.B., Aneja, V.P., Kang, D. and Arya, S.P. (2006) Modelling and Analysis of the Atmospheric Nitrogen Deposition in North Carolina. International Journal of Global Environmental Issues, 6, 231-252.
[10]  Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G. and Jarvis, A. (2005) Very High Resolution Interpolated Climate Surfaces for Global Land Areas. International Journal of Climatology, 25, 1965-1978.
[11]  Sanchez, A.C., Osborne, P.E. and Haq, N. (2010) Identifying the Global Potential for Baobab Tree Cultivation using Ecological Niche Modelling. Agroforestry Systems, 80, 191-201.
[12]  Zuur, A.F., Ieno, E.N. and Elphick, C.S. (2010) A Protocol for Data Exploration to Avoid Common Statistical Problems. Methods in Ecology and Evolution, 1, 3-14.
[13]  Elith, J., Kearney, M. and Phillips, S. (2010) The Art of Modelling Range-Shifting Species. Methods in Ecology and Evolution, 1, 330-342.
[14]  Good, P., Jones, C., Lowe, J., Betts, R. and Gedney, N. (2013) Comparing Tropical Forest Projections from Two Generations of Hadley Centre Earth System Models, HadGEM2-ES and HadCM3LC. Journal of Climate, 26, 495-511.
[15]  Panitz, H., Schu-bert-frisius, M., Meier-fleischer, K., Lenzen, P., Keuler, K., Luethi, D., Dosio, A., et al. (2013) CORDEX Climate Simulations for Africa using COSMO-CLM (CCLM). Geophysical Research Abstracts, 15, EGU2013-1387.
[16]  vanVuuren, D.P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Rose, S.K., et al. (2011) The Representative Concentration Pathways: An Overview. Climatic Change, 109, 5-31.
[17]  Moss, R.H., Edmonds, J.A., Hibbard, K.A., Manning, M.R., Rose, S.K., van Vuuren, D.P., Nakicenovic, N., et al. (2010) The Next Generation of Scenarios for Climate Change Research and Assessment. Nature, 463, 747-756.
[18]  Engler, R., Guisan, A. and Rechsteiner, L. (2004) An Improved Approach for Predicting the Distribution of Rare and Endangered Species from Occurrence and Pseudo-Absence Data. Journal of Applied Ecology, 41, 263-274.
[19]  Kumar, S. and Stohlgren, T.J. (2009) Maxent Modeling for Predicting Suitable Habitat for Threatened and Endangered Tree Canacomyricamonticola in New Caledonia. Journal of Ecology and Natural Science, 1, 94-98.
[20]  Carroll, C. (2010) Role of Climatic Niche Models in Focal-Species-Based Conservation Planning: Assessing Potential Effects of Climate Change on Northern Spotted Owl in the Pacific Northwest, USA. Biological Conservation, 143, 1432-1437.
[21]  Phillips, S.J., Dudík, M., Elith, J., Graham, C.H., Lehmann, A., Leathwick, J. and Ferrier, S. (2009) Sample Selection Bias and Presence-Only Distribution Models: Implications for Background and Pseudo-Absence Data. Ecological Applications, 19, 181-197.
[22]  Syfert, M.M., Smith, M.J. and Coomes, D.A. (2013) The Effects of Sampling Bias and Model Complexity on the Predictive Performance of MaxEnt Species Distribution Models. PLoS ONE, 8, e55158.
[23]  Peterson, A.T., Soberón, J., Pearson, R.G., Anderson, R.P., Martínez-Meyer, E., Nakamura, M. and Araújo, M.B. (2011) Ecological Niches and Geographic Distributions.
[24]  Peterson, A.T. and Soberón, J. (2012) Species Distribution Modeling and Ecological Niche Modeling: Getting the Concepts Right. Natureza a Conservacao, 10, 102-107.
[25]  Martínez, I., Carreno, F., Escudero, A. and Rubio, A. (2006) Are Threatened Lichen Species Well-Protected in Spain? Effectiveness of a Protected Areas Network. Biological Conservation, 133, 500-511.
[26]  Liu, C., Berry, P.M., Dawson, T.P. and Pearson, R.G. (2005) Selecting Thresholds of Occurrence in the Prediction of Species Distributions. Ecography, 28, 385-393.
[27]  Houinato, M., Sinsin, B. and Lejoly, J. (2001) Impact des feux de broussesur la dynamique des communautésvégétalesdans la forêt de Bassila (Bénin). Acta Botanica Gallica, 8078, 37-41.
[28]  Ayihouenou, E.B. (2014) Modélisation de la répartitiongéographique des airesfavorables à la culture et à la conservation de Parkiabiglobosa sous influence des changementsclimatiques au Bénin. Thes. Doc, University of Abomey-Calavi, 89.
[29]  IPCC (2007) Climate Change 2007: Impacts, Adaptation and Vulnerability: Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel. Genebra, Suíca.


comments powered by Disqus

Contact Us