All Title Author
Keywords Abstract

Publish in OALib Journal
ISSN: 2333-9721
APC: Only $99

ViewsDownloads

Bi-Stable Spiral Waves: Stepped Spiral Waves

DOI: 10.4236/oalib.1103982, PP. 1-10

Subject Areas: Mechanics, Applied Physics, Modern Physics

Keywords: Renin, Aldosterone, Metabolic Syndrome, Ischaemic Stroke

Full-Text   Cite this paper   Add to My Lib

Abstract

A new type of bi-stable spiral waves called “stepped spiral waves”, is investigated in this study in an oscillatory medium exhibiting period-doubling bifurcations. Prior to the period-doubling bifurcation of this system, the stepped spiral waves are produced by an unwanted phase trajectory event; the loss of symmetry takes the form of synchronization defect lines, where the trajectory in the local oscillation phase space changes into two different ways. The formation principle of this type of bi-stable spiral wave and the internal structure and geometry of these synchronization defects are studied, and several potential categories of stepped spiral waves are discussed.

Cite this paper

Gao, J. , Wang, Q. and Lv, H. (2017). Bi-Stable Spiral Waves: Stepped Spiral Waves. Open Access Library Journal, 4, e3982. doi: http://dx.doi.org/10.4236/oalib.1103982.

References

[1]  Turing, A.M. (1952) Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 237, 37.
https://doi.org/10.1098/rstb.1952.0012
[2]  Schnell, S., Grima, R. and Maini, P.K. (2007) Multiscale Modeling in Biology. American Scientist, 95, 134.
https://doi.org/10.1511/2007.64.134
[3]  Meinhardt, H. (2003) The Algorithmic Beauty of Sea Shells. Springer, Berlin.
https://doi.org/10.1007/978-3-662-05291-4
[4]  Murray, J.D. (2003) Mathematical Biology. Springer, New York.
[5]  Woolley, T.E., Baker, R.E., Maini, P.K., et al. (2010) Analysis of Stationary Droplets in a Generic Turing Reaction-Diffusion System. Physical Review E, 82, Article ID: 051929.
https://doi.org/10.1103/PhysRevE.82.051929
[6]  Cross, M.C. and Hohenberg, P.C. (1993) Pattern Formation Outside of Equilibrium. Reviews of Modern Physics, 65, 851.
https://doi.org/10.1103/RevModPhys.65.851
[7]  Aranson, I.S. and Kramer, L. (2002) The World of the complex Ginzburg-Landau Equation. Reviews of Modern Physics, 74, 99.
https://doi.org/10.1103/RevModPhys.74.99
[8]  Kuramoto, Y. (1984) Chemical Oscillations, Waves, and Turbulence. Springer-Verlag, Berlin.
https://doi.org/10.1007/978-3-642-69689-3
[9]  Mikhailov, A.S. and Showalter, K. (2006) Control of Waves, Patterns and Turbulence in Chemical Systems. Physics Reports, 425, 79.
https://doi.org/10.1016/j.physrep.2005.11.003
[10]  Yang, X., Marenduzzo, D. and Marchetti, M.C. (2014) Spiral and Never-Settling Patterns in Active Systems. Phys-ical Review E, 89, Article ID: 012711.
https://doi.org/10.1103/PhysRevE.89.012711
[11]  Affan, H. and Friedrich, R. (2014) Spiral Defect Chaos in an Advection-Reaction-Diffusion System. Physical Review E, 89, Article ID: 062920.
https://doi.org/10.1103/PhysRevE.89.062920
[12]  Winfree, A.T. (1972) The Revival Wave Induced Spontaneously in a BZ-Type Mixture. Science, 175, 634.
https://doi.org/10.1126/science.175.4022.634
[13]  Ouyang, Q., Swinney, H.L. and Li, G. (2000) Transition from Spirals to Defect-Mediated Turbulence Driven by a Doppler Instability. Physical Review Letters, 84, 1047.
https://doi.org/10.1103/PhysRevLett.84.1047
[14]  Vanag, V.K. and Epstein, I.R. (2001) Inwardly Rotating Spiral Waves in a Reaction-Diffusion System. Science, 294, 835.
https://doi.org/10.1126/science.1064167
[15]  Zanin, M.P., Hellstrom, M., Shepherd, R.K., Harvey, A.R. and Gillespie, L.N. (2014) Development of a Cell-Based Treatment for Long-Term Neurotrophin Expression and Spiral Ganglion Neuron Survival. Neuroscience, 277, 26.
[16]  Pinter, A., Lücke, M. and Hoffmann, Ch. (2006) Wave-Number Dependence of the Transitions between Traveling and Standing Vortex Waves and Their Mixed States in the Taylor-Couette System. Physical Review Letters, 96, Article ID: 044506.
https://doi.org/10.1103/PhysRevLett.96.044506
[17]  Gu, C., St-Yves, G. and Da-vidsen, J. (2013) Spiral Wave Chimeras in Complex Oscillatory and Chaotic Systems. Physical Review Letters, 111, Article ID: 134101.
https://doi.org/10.1103/PhysRevLett.111.134101
[18]  Tomchik, K.N. and Devreotes, P.N. (1981) Adenosine 3’,5’-Monophosphate Waves in Dictyostelium Discoideum: A Demonstration by Isotope Dilution—Fluorography. Science, 212, 433.
https://doi.org/10.1126/science.6259734
[19]  Lechleiter, J., Girard, S., Peralta, E. and Clapham, D. (1991) Spiral Calcium Wave Propagation and Annihilation in Xenopus laevis Oocytes. Science, 252, 123.
https://doi.org/10.1126/science.2011747
[20]  Horning, M., Takagi, S. and Yoshikawa, K. (2010) Wave Emission on Interacting Heterogeneities in Cardiac Tissue. Physical Review E, 82, Article ID: 021926.
https://doi.org/10.1103/PhysRevE.82.021926
[21]  Tang, J., Luo, J., Ma, J., Yi, M. and Yang (2013) Spiral Waves in Systems with Fractal Heterogeneity. Physica A: Statistical Mechanics and Its Applications, 392, 22.
[22]  Dahlem, M.A. and Müller, S.C. (1997) Control of Sub-Excitable Waves in Neural Networks by Nonlocal Coupling. Experimental Brain Research, 115, 319.
https://doi.org/10.1007/PL00005700
[23]  Zhan, M. and Kapral, R. (2006) Destruction of Spiral Waves in Chaotic Media. Physical Review E, 73, Article ID: 026224.
https://doi.org/10.1103/PhysRevE.73.026224
[24]  Sridhar, S., Sinha, S. and Panfilov, A.V. (2010) Anomalous Drift of Spiral Waves in Heterogeneous Excitable Media. Physical Review E, 82, Article ID: 051908.
https://doi.org/10.1103/PhysRevE.82.051908
[25]  Sandstede, B. and Scheel, A. (2001) Superspiral Structures of Meandering and Drifting Spiral Waves. Physical Review Letters, 86, 171.
https://doi.org/10.1103/PhysRevLett.86.171
[26]  Bar, M. and Bru-sch, L. (2004) Breakup of Spiral Waves Caused by Radial Dynamics: Eckhaus and Finite Wavenumber Iinstabilities. New Journal of Physics, 6, 5.
https://doi.org/10.1088/1367-2630/6/1/005
[27]  Luengviriya, J., Sutthiopad, M., Phantu, M., Porjai, P., Kanchanawarin, J., Müller, S.C. and Luengviriya, C. (2014) Meandering Spiral Waves in a Bubble-Free Belousov-Zhabotinsky Reaction with Pyrogallol. Physical Review E, 90, Article ID: 052919.
https://doi.org/10.1103/PhysRevE.90.052919
[28]  Petrov, V., Ouyang, Q. and Swin-ney, H.L. (1997) Resonant Pattern Formation in a Chemical System. Nature (London), 388, 655.
https://doi.org/10.1038/41732
[29]  Aranson, L.K. and Weber, A. (1993) Theory of Interaction and Bound States of Spiral Waves in Oscillatory Media. Physical Review E, 47, 3231.
https://doi.org/10.1103/PhysRevE.47.3231
[30]  Klevecz, R., Pilliod, J. and Bolen, J. (1991) Autogenous Formation of Spiral Waves by Coupled Chaotic Attractors. Chronobiology International, 8, 6.
https://doi.org/10.3109/07420529109063914
[31]  Brunnet, L., Chaté, H. and Manneville, P. (1994) Long-Range Order with Local Chaos in Lattices of Diffusively Coupled ODEs. Physica (Amsterdam), 78D, 141.
[32]  Goryachev, A. and Kapral, R. (1996) Structure of Complex-Periodic and Chaotic Media with Spiral Waves. Physical Review E, 54, 5469.
https://doi.org/10.1103/PhysRevE.54.5469
[33]  Goryachev, A. and Chaté, H. (1998) Transitions to Line-Defect Turbulence in Complex Oscillatory Media. Physical Review Letters, 80, 4.
[34]  Basar, G. and Dunne, G.V. (2010) Chiral Magnetic Spirals. Physical Review Letters, 104, 23.
https://doi.org/10.1103/PhysRevLett.104.232301

Full-Text


comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413