全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

Predicting the Enthalpy of Vaporization and Calculating the Entropy of Vaporization of 87 Octane Gasoline Using Vapor Pressure

DOI: 10.4236/oalib.1102954, PP. 1-11

Subject Areas: Physical Chemistry

Keywords: Gasoline, Vapor Pressure (VP), Enthalpy of Vaporization, Entropy of Vaporization, Volatile Organic Compounds (VOCs)

Full-Text   Cite this paper   Add to My Lib

Abstract

The vapor pressure (VP) of 87 grade gasoline was measured using an enhanced VP acquisition system over a temperature range of approximately 19.0℃ (292.2 K) and 69.0℃ (342.2 K). The empirical data were used to predict the thermodynamic entities the enthalpy of vaporization (ΔHvap) and the entropy of vaporization (ΔSvap) of gasoline. The results of this investigation yielded a ΔHvap value of 35.1 kJ/mol and ΔSvap of 102.5 J/mol·K. The value of ΔHvap was in excellent agreement with the findings of a prior study (Balabin et al., 2007), which produced a ΔHvap values of 37.3 kJ/mol and 35.4 kJ/mol. The enthalpy and entropy of vaporization of n-heptane (37.2 kJ/mol and 100.1 J/mol·K) and n-octane (39.1 kJ/mol and 98.3 J/mol·K) were also determined after acquiring VP data for the two VOCs. The empirical results for n-heptane and n-octane were also in excellent agreement with the literature. These favorable comparisons strengthen the capacity of our system for acquiring the VP data for pure and volatile multi-component mixtures.

Cite this paper

Abernathy, S. M. and Brown, K. R. (2016). Predicting the Enthalpy of Vaporization and Calculating the Entropy of Vaporization of 87 Octane Gasoline Using Vapor Pressure. Open Access Library Journal, 3, e2954. doi: http://dx.doi.org/10.4236/oalib.1102954.

References

[1]  ASTM (1999) Annual Book of Standards. American Society for Testing and Materials, Philadelphia.
[2]  da Silva, R., Cataluna, R., de Menezes, E.W., Samios, D. and Piatnicki, C.M.S. (2005) Effect of Additives on the Antiknock Properties and Reid Vapor Pressure of Gasoline. Fuel, 84, 951-959.
http://dx.doi.org/10.1016/j.fuel.2005.01.008
[3]  Riazi, M.R., Albahri, T.A. and AlQattan, A.H. (2003) Prediction of the Reid Vapor Pressure of Petroleum Fuels. Fuel Chemistry Division Preprints, 48, 478-479.
[4]  Farsibaf, M.M., Golchinpour, M. and Barzegar, A. (2011) Global Optimization in Order to Find Blend Composition of Gasoline of Desired Octane Number Considering Ethanol as Octane-Booster. Proceeding of the 41st International Conference on Computers & Industrial Engineering.
[5]  Chupka, G.M., Christensen, E., Fouts, L., Alleman, M.A., Matthew, A.R. and McCormick, R.L. (2015) Heat of Vaporization Measurements for Ethanol Blends up to 50 Volume Percent in Several Hydrocarbon Blendstocks and Implications for Knock in SI Engines. SAE International Journal of Fuels and Lubricants, 8, 251-263.
http://dx.doi.org/10.4271/2015-01-0763
[6]  Andersen, V.F., Andersen, J.E., Wallington, T.J., Mueller, S.A. and Nielsen, O.J. (2010) Vapor Pressure of Alcohol-Gasoline Blends. Energy Fuels, 24, 3647-3654.
http://dx.doi.org/10.1021/ef100254w
[7]  Abernathy, S.M. and Brown, K.R. (2015) Using the Vapor Pressure of Pure Volatile Organic Compounds to Predict the Enthalpy of Vaporization and Computing the Entropy of Vaporization. Open Access Library Journal, 2, e1927.
http://dx.doi.org/10.4236/oalib.1101927
[8]  Garland, C.W., Nibler, J.W. and Shoemaker, D.P. (2009) Experiments in Physical Chemistry. 8th Edition, McGraw-Hill, New York.
[9]  Weast, R.C., Astle, M.J. and Beyer, W.H. (1984) CRC Handbook of Chemistry and Physics. In: Eds., R.C., CRC Press, Boca Raton, D199-D214.
[10]  Balabin, R.M., Syunyaev, R.Z. and Kapov, S.A. (2007) Molar Enthalpy of Vaporization of Ethanol-Gasoline Mixtures and Their Colloid State. Fuel, 86, 323-327.
http://dx.doi.org/10.1016/j.fuel.2006.08.008
[11]  Girard, J.E. (2005) Principles of Environmental Chemistry. Jones and Bartlett Publishers, MA.
[12]  Sipowska, J.T. and Wieczorek, S.A. (1984) Vapour Pressure and Excess Gibbs Free Energies of (Cyclohexanol n-Heptane) between 303.147 and 373.278 K. Journal of Chemical Thermodynamics, 16, 693-699.
http://dx.doi.org/10.1016/0021-9614(84)90051-X
[13]  Ewing, M.B. and Ochoa, J.C. (2003) The Vapour Pressure of n-Octane Determined Using Comparative Ebulliometry. Fluid Phase Equilibria, 210, 277-285.
http://dx.doi.org/10.1016/S0378-3812(03)00174-2
[14]  Wu, H.S., Pividal, K.A. and Sandler, S.I. (1991) Vapor-Liquid Equilibria of Hydrocarbons and Fuel Oxygenates. Journal of Chemical & Engineering Data, 36, 418-421.
http://dx.doi.org/10.1021/je00004a021
[15]  http://webbook.nist.gov/chemistry/form-ser.html 
[16]  Gopinathan, N. and Sarai, D.N. (2001) Predict Heat of Vaporization of Crudes and Pure Components Revised II. Fluid Phase Equilibria, 179, 277-284.
http://dx.doi.org/10.1016/S0378-3812(00)00501-X

Full-Text


comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413