Publish in OALib Journal
ISSN: 2333-9721
APC: Only $99
Proofs of the Density Theorem and Fatou’s Radial Limit Theorem Using the Poisson Integral
DOI: 10.4236/oalib.1102732 , PP. 1-8
Subject Areas:
Function Theory
Keywords: Poisson Integral , Density , Radial Limits , Harmonic Functions
Abstract
Using only the Poisson integral and elementary convergence theorems, we prove the well-known Density theorem and Fatou’s radial limit theorem.
Cite this paper
Marafino, J. (2016). Proofs of the Density Theorem and Fatou’s Radial Limit Theorem Using the Poisson Integral. Open Access Library Journal , 3, e2732. doi: http://dx.doi.org/10.4236/oalib.1102732 .
References
[1 ] Natanson, I.P. (1961) Theory of Functions of a Real
Variable, Volume I. Frederick Ungar Publishing Co., New York.
[2 ] Munroe, M.E. (1971) Measure and Integration. 2nd Edition, Addison Wesley, Massachusetts.
[3 ] Saks, S. (1964) Theory of the Integral. 2nd Revised Edition,
Dover
Publications Inc., New York.
[4 ] Tsuji, M. (1975) Potential Theory in Modern Function
Theory. 2nd Edition, Chelsea Publishing Co., New
York.
[5 ] Hille, E. (1976) Analytic Function Theory, Volume II. 2nd Edition, Chelsea Publishing Co., New
York.
[6 ] Markushevich, A.I. (1977) Theory of Functions of a Complex
Variable, Three Volumes in One. 2nd Edition, Chelsea Publishing Co., New
York.
[7 ] Nevanlinna, R. and Paatero, V. (1982) Introduction to Complex Analysis. 2nd Edition, Chelsea Publishing Co., New
York.
[8 ] Ahlfors, L.V. (1966) Complex Analysis. 2nd Edition, McGraw Hill Publishing Co., New
York.
[9 ] Churchill, R.V. and Brown, J.W. (1990) Complex Variables and Applications. 5th Edition, McGraw Hill Publishing Co., New York.
[10 ] Royden, H.L. (1963) Real Analysis. The Macmillan Co., New York.
Full-Text
Contact Us
service@oalib.com
QQ:3279437679
WhatsApp +8615387084133