All Title Author
Keywords Abstract

Publish in OALib Journal
ISSN: 2333-9721
APC: Only $99

ViewsDownloads

Noether’s Conservation Laws and Stability in Nonlinear Conservative Interactions

DOI: 10.4236/oalib.1102592, PP. 1-18

Subject Areas: Biophysics

Keywords: Noether’s Theorem, Conservative Nonlinear Model, Conservation Laws and Stability in Complex Systems

Full-Text   Cite this paper   Add to My Lib

Abstract

We reviewed a nonlinear dynamical model in 2n-variables which has conservative nonlinear interactions defined in terms of Noether’s theorem in dynamics. The 2-variable (n = 1) conservative nonlinear model with external perturbations produced a possible explanation for problems such as the 10-year cycles of Canadian Lynx and snowshoe hair, interactions of microbes, stability and conservation law of nonlinear interacting systems. In this paper, the atto-fox (10-18-fox) problem on the LV nonlinear equation, properties of 4-variable conservative nonlinear interactions different from nonconservative nonlinear interactions are examined and emphasized. Properties of the 4-variable (n = 2) conservative interaction model and a method to construct numerical solutions are discussed by employing the 2-variable solution. The periodic times of component variables and the net periodic time defined by superposition of component variables are discussed in order to study stability of the net 4-variable system. With symmetries and conservation laws, nonlinear analyses would be useful to study microscopic and macroscopic complex systems.

Cite this paper

Uechi, L. and Uechi, H. (2016). Noether’s Conservation Laws and Stability in Nonlinear Conservative Interactions. Open Access Library Journal, 3, e2592. doi: http://dx.doi.org/10.4236/oalib.1102592.

References

[1]  Ramos, A.F., Innocentini, G.C.P., Forger, F.M. and Hornos, J.E.M. (2010) Symmetry in Biology: From Genetic Code to Stochastic Gene Regulation. IET Systems Biology, 4, 311-329.
http://dx.doi.org/10.1049/iet-syb.2010.0058
[2]  Ives, A.R. and Carpenter, S.R. (2007) Stability and Diversity of Ecosystems. Science, 317, 58-62.
[3]  Allesina, S. and Tang, S. (2012) Stability Criteria for Complex Ecosystems. Nature, 483, 205-208.
http://dx.doi.org/10.1038/nature10832
[4]  Thébault, E. and Fontaine, C. (2010) Stability of Ecological Communities and the Architecture of Mutualistic and Trophic Networks. Science, 329, 853-856.
http://dx.doi.org/10.1126/science.1188321
[5]  Daafouz, J., Riedinger, P. and Iung, C. (2002) Stability Analysis and Control Synthesis for Switched Systems: A Switched Lyapunov Function Approach. IEEE Transactions on Automatic Control, 47, 1883-1887.
[6]  Harberman, R. (1977) Mathematical Model: Population Dynamics, Prentice Hall, Upper Saddle River.
[7]  Uechi, L. and Akutsu, T. (2012) Conservation Laws and Symmetries in Competitive Systems. Progress of Theoretical Physics Supplement, 194, 210-222.
http://dx.doi.org/10.1143/PTPS.194.210
[8]  Uechi, L. and Akutsu, T. (2013) Stability and Restoration Phenomena in Competitive Systems. Progress of Theoretical and Experimental Physics, 2013, 103J01.
[9]  Naz, R (2010) Conservation Laws for a Complexly Coupled KDV System, Coupled Burgers’ System and Drinfeld-Sokolov-Wilson System via Multiplier Approach. Communications in Nonlinear Science and Numerical Simulation, 15, 1177-1182.
http://dx.doi.org/10.1016/j.cnsns.2009.05.071
[10]  Zhang, Y. and Zhou, Y. (2013) Symmetries and Conserved Quantities for Fractional Action-Like Pfaffian Variational Problems. Nonlinear Dynamics, 73, 783-793.
http://dx.doi.org/10.1007/s11071-013-0831-x
[11]  Basille, M., Fortin, D., Dussault, C., Ouellet, J.P. and Courtois, R. (2011) Ecologically Based Definition of Seasons Clarifies Predator-Prey Interactions. Ecography, 35, 1-10.
[12]  Stenseth, N.C., Falck, W., Chan, K.S., Bjornstad, O.N., O’Donoghue, M., Tong, H., Boonstra, R., Boutin, S., Krebs, C., J. and Yoccoz, N.G. (1998) From Patterns to Processes: Phase and Density Dependencies in the Canadian Lynx Cycle. Proceedings of the National Academy of Sciences, 95, 15430-15435.
http://dx.doi.org/10.1073/pnas.95.26.15430
[13]  Schindler, D.E., Carter, J.L., Francis, T.B., Lisi, P.J., Askey, P.J. and Sebastian, D.C. (2012) Mysis in the Okanagan Lake Food Web: A Time-Series Analysis of Interaction Strengths in an Invaded Plankton Community. Aquatic Ecology, 46, 1-13.
http://dx.doi.org/10.1007/s10452-012-9393-0
[14]  Chyu, J., Fonarow, G.C., Tseng, C.H. and Horwich, T.B. (2014) Four-Variable Risk Model in Men and Women with Heart Failure. Circulation: Heart Failure, 7, 88-95.
http://dx.doi.org/10.1161/CIRCHEARTFAILURE.113.000404
[15]  Nair, S., Mishra, V., Hayden, K., Lisboa, P.J.G., Pandya, B., Vinjamuri, S., Hardy, K.J. and Wilding, J.P.H. (2011) The Four-Variable Modification of Diet in Renal Disease Formula Underestimates Glomerular Filtration Rate in Obese Type 2 Diabetic Individuals with Chronic Kidney Disease. Diabetologia, 54, 1304-1307.
http://dx.doi.org/10.1007/s00125-011-2085-9
[16]  Freedman, H.I. (1980) Deterministic Mathematical Models in Population Ecology. Marcel Dekker Inc, Basel.
[17]  Lotka, A. (1925) Elements of Physical Biology. Williams and Wilkins, Baltimore.
[18]  Volterra, V. (1926) Variazioni e fluttuazioni del numero d’individui in specie animali conviventi. Memoria della Reale Accademia Nazionale dei Lincei, 2, 31-113.
[19]  Meinhardt, H. (1982) Models of Biological Pattern Formation. Vol. 6, Academic Press, London.
[20]  Gierer, A. and Meinhardt, H. (1972) A Theory of Biological Pattern Formation. Biological Cybernetics, 12, 30-39.
http://dx.doi.org/10.1007/bf00289234
[21]  Turing, A.M. (1952) The Chemical Basis of Morphogenesis. Philosophical Transactions of the Royal Society B, 237, 37-72.
http://dx.doi.org/10.1098/rstb.1952.0012
[22]  Kondo, S. and Asai, R. (1995) A Reaction—Diffusion Wave on the Skin of the Marine Angelfish Pomacanthus. Nature, 376, 765-768.
http://dx.doi.org/10.1038/376765a0
[23]  Lengyel, I. and Epstein, I.R. (1991) Modeling of Turing Structures in the Chlorite-Iodide-Malonic Acid-Starch Reaction System. Science, 251, 650-652.
http://dx.doi.org/10.1126/science.251.4994.650
[24]  Kumar, N. and Horsthemke, W. (2011) Effects of Cross Diffusion on Turing Bifurcations in Two-Species Reaction- Transport Systems. Physical Review E, 83, Article ID: 036105.
http://dx.doi.org/10.1103/physreve.83.036105
[25]  Brauer, F. and Castillo-Chavez, C. (2010) Mathematical Models in Population Biology and Epidemiology. Springer Science, Berlin.
[26]  Haccou, P., Jagers, P. and Vatutin, V.A. (2005) Branching Processes. Cambridge University Press, Cambridge.
http://dx.doi.org/10.1017/CBO9780511629136
[27]  Stenseth, N.C., Falck, W., Chan, K.S., Bjornstad, O.N., M. Donoghue, O., Tong, H., Boonstra, R., Boutin, S., Krebs, C.J. and Yoccoz. N.G. (1998) From Patterns to Processes: Phase and Density Dependencies in the Canadian Lynx Cycle.  Proceedings of the National Academy of Sciences of the United States of America, 95, 15430-15435.
http://dx.doi.org/10.1073/pnas.95.26.15430
[28]  Elton, C. and Nicholson, M. (1942) The Ten-Year Cycle in Numbers of the Lynx in Canada. Journal of Animal Ecology, 11, 215-244.
http://dx.doi.org/10.2307/1358
[29]  Stenseth, N.C., Falck, W., Bjornstad, O.N. and Krebs, C.J. (1997) Population Regulation in Snowshoe Hare and Canadian Lynx: Asymmetric Food Web Configurations between Hare and Lynx. Proceedings of the National Academy of Sciences of the United States of America, 94, 5147-5152.
http://dx.doi.org/10.1073/pnas.94.10.5147
[30]  Krebs, C.J., Boonstra, R., Boutin, S. and Sinclair, A.R.E. (2001) What Drives the 10-Year Cycle of Snowshoe Hares?  BioScience, 51, 25-35.
http://dx.doi.org/10.1641/0006-3568(2001)051[0025:WDTYCO]2.0.CO;2
[31]  Basille, M., Fortin, D., Dussault, C., Ouellet, J.P. and Courtois, R. (2013) Ecologically Based Definition of Seasons Clarifies Predator—Prey Interactions. Ecography, 36, 220-229.
http://dx.doi.org/10.1111/j.1600-0587.2011.07367.x
[32]  Blasius, B., Huppert, A. and Stone, L. (1999) Complex Dynamics and Phase Synchronization in Spatially Extended Ecological Systems. Nature, 399, 354-359.
http://dx.doi.org/10.1038/20676
[33]  Maquet, J., Letellier, C. and Aguirre, L.A. (2007) Global Models from the Canadian Lynx Cycles as a Direct Evidence for Chaos in Real Ecosystems. Journal of Mathematical Biology, 55, 21-39.
http://dx.doi.org/10.1007/s00285-007-0075-9
[34]  Schindler, D.E., Carter, J.L., Francis, T.B., Lisi, P.J., Askey, P.J. and Sebastian, D.C. (2012) Mysis in the Okanagan Lake Food Web: A Time-Series Analysis of Interaction Strengths in an Invaded Plankton Community. Aquatic Ecology, 46, 1-13.
http://dx.doi.org/10.1007/s10452-012-9393-0
[35]  Gazi, N.H. (2012) Dynamics of a Marine Plankton System: Diffusive Instability and Pattern Formation. Applied Mathematics and Computation, 218, 8895-8905.
http://dx.doi.org/10.1016/j.amc.2012.02.048
[36]  Taniguchi, M., Bando, M. and Nakayama, A. (2008) Business Cycle and Conserved Quantity in Economics. Journal of the Physical Society of Japan, 77, Article ID: 114001.
http://dx.doi.org/10.1143/jpsj.77.114001
[37]  González, E. and Villena. M. (2011) Spatial Lanchester Models. European Journal of Operational Research, 210, 706- 715.
http://dx.doi.org/10.1016/j.ejor.2010.11.009
[38]  Mazenc, F. and Malisoff, M. (2010) Strict Lyapunov Function Constructions under LaSalle Conditions with an Application to Lotka-Volterra Systems. IEEE Transactions on Automatic Control, 55, 841-854.
http://dx.doi.org/10.1109/TAC.2010.2041995
[39]  Smith, H.L. and Waltman, P. (1995) The Theory of the Chemostat. Cambridge University Press, Cambridge.
http://dx.doi.org/10.1017/CBO9780511530043
[40]  Mollison, D. (1991) Dependence of Epidemic and Population Velocities on Basic Parameters. Mathematical Biosci- ences, 107, 255-287.
http://dx.doi.org/10.1016/0025-5564(91)90009-8
[41]  Kloeden, P.E. and Potzsche, C. (2010) Dynamics of Modified Predator-Prey Models. International Journal of Bifur- cation and Chaos, 20, 2657-2669.
http://dx.doi.org/10.1142/S0218127410027271
[42]  Goldstein, H., Poole, C. and Safko, J. (2001) Classical Mechanics. 3rd Edition, Addison Wesley, Upper Saddle River.
[43]  Logan, J.D. (1977) Invariant Variational Principles. Academic Press Inc., Cambridge.
[44]  Vujanovic, B.D. and Jones, S.E. (1989) Variational Methods in Nonconservative Phenomena. Academic Press Inc., Cambridge.
[45]  Sieniutycz, S. (1994) Conservation Laws in Variational Thermo-Hydrodynamics. Kluwer Academic Pub., Norwell.
http://dx.doi.org/10.1007/978-94-011-1084-6
[46]  Sieniutycz, S. and Farkas, H. (2005) Variational and Extremum Principles in Macroscopic Systems. Elsevier, Amster- dam.
[47]  Mattuck, R.D. (1976) A Guide to Feynman Diagrams in the Many-Body Problem. McGraw-Hill, New York.
[48]  Prigogine, I. and Stengers, I. (1984) Order Out of Chaos. Bantam Books, New York.
[49]  Nicolis, G. and Prigogine, I. (1977) Self-Organization in Nonequilibrium Systems. Wiley-Interscience Publication, Hoboken.
[50]  Kauffman, S.A. (1993) The Origins of Order. Oxford University Press, New York.
[51]  Bertalanffy, L.V. (1968) General System Theory. George Braziller Inc., New York.
[52]  Jackson, J.D. (1962) Classical Electrodynamics. John Wiley & Sons, Hoboken.
[53]  Kreyszig, E. (1999) Advanced Engineering Mathematics. John Wiley & Sons, Hoboken.
[54]  Ott, E. (2002) Chaos in Dynamical Systems. Cambridge University Press, Cambridge.
http://dx.doi.org/10.1017/CBO9780511803260

Full-Text


comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

微信:OALib Journal