全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

Dark Matter Distribution in the Vicinity of Stars

DOI: 10.4236/oalib.1102421, PP. 1-4

Subject Areas: Theoretical Physics, Modern Physics

Keywords: Galaxy: Structure—Solar Neighborhood, Galaxies: Dark Matter, Mass and Mass Distribution, Kinematics and Dynamics

Full-Text   Cite this paper   Add to My Lib

Abstract

It is generally accepted that dark matter must be found throughout galaxies. The observed motion of stars demands that galaxies contain large amounts of dark matter distributed throughout according to a particular density function. However, it is argued in this paper that this assumed density function should apply to all matter in the galaxy, not just dark matter. This paper reasons that in a region where a strong concentration of visible matter is observed, an absence of dark matter ought to be expected. In particular, calculations show that the dark matter density in the expanded solar neighbourhood (a kiloparsec radial extent from the Sun) should be as expected, in agreement with kinematic measurements; however, the immediate solar neighbourhood (within a few parsecs radial extent from the Sun) should be mostly devoid of dark matter, in accordance with the lack of success in finding dark matter using direct detection experiments on Earth.

Cite this paper

Friedmann, D. E. (2016). Dark Matter Distribution in the Vicinity of Stars. Open Access Library Journal, 3, e2421. doi: http://dx.doi.org/10.4236/oalib.1102421.

References

[1]  Baugh, C.M. (2006) A Primer on Hierarchical Galaxy Formation: The Semi-Analytical Approach. Reports on Progress in Physics, 69, 3101-3156.
http://dx.doi.org/10.1088/0034-4885/69/12/R02
[2]  Persic, M., Salucci, P. and Stel, F. (1996) The Universal Rotation Curve of Spiral Galaxies: I. The Dark Matter Connection. MNRAS, 281, 27-47.
http://dx.doi.org/10.1093/mnras/278.1.27
[3]  Friedmann, D.E. (2011) Dark Matter Redistribution Explains Galaxy Growth and Rotation Curve Development. Journal of Cosmology, 13.
http://arxiv.org/abs/0912.1668v4  
[4]  Garbari, S., Liu, C., Read, J.I. and Lake, G. (2012) A New Determination of the Local Dark Matter Density from the Kinematics of K Dwarfs. MNRAS, 425, 1445-1458.
http://dx.doi.org/10.1111/j.1365-2966.2012.21608.x
[5]  Zhang, L., Rix, H-W., van de Ven, G., Bovy, J., Liu, C. and Zhao, G. (2013) The Gravitational Potential near the Sun from SEGUE K-Dwarf Kinematics. Astrophysical Journal, 772, 108.
http://dx.doi.org/10.1088/0004-637X/772/2/108
[6]  Read, J.I. (2014) The Local Dark Matter Density. Journal of Physics G: Nuclear and Particle Physics, 41, Article ID: 063101.
http://dx.doi.org/10.1088/0954-3899/41/6/063101
[7]  Xia, Q., Liu, C., Mao, S., et al. (2015) Determining the Local Dark Matter Density with LAMOST Data.
http://arxiv.org/abs/1510.06810v1  
[8]  Zacek, V., Archambault, S., Behnke, E., et al. (2011) Dark Matter Search with PICASSO. Journal of Physics: Conference Series, 375.
[9]  Aprile, E., Arisaka, K., Arneodo, F., et al. (2012) The XENON100 Dark Matter Experiment. Astroparticle Physics, 35, 573-590.
http://dx.doi.org/10.1016/j.astropartphys.2012.01.003
[10]  Aalseth, C.E., Barbeau, P.S., Colaresi, J., et al. (2014) Search for an Annual Modulation in Three Years of CoGeNT Dark Matter Detector Data.
http://arxiv.org/abs/1401.3295v1  
[11]  Angloher, G., Bauer, M., Bavykina, I., et al. (2012) Results from 730 kg Days of the CRESST-II Dark Matter Search. European Physical Journal C, 72, 1971.
http://dx.doi.org/10.1140/epjc/s10052-012-1971-8
[12]  Undagoitia, T. and Rauch, L. (2015) Dark Matter Direct-Detection Experiments.
http://arxiv.org/abs/1509.08767v1  
[13]  Chenciner, A. and Féjoz, J. (2009) Unchained Polygons and the N-Body Problem. Regular and Chaotic Dynamics, 14, 64-115.
http://dx.doi.org/10.1134/S1560354709010079
[14]  Suvakov, M. and Dmitrasinovic, V. (2013) Three Classes of Newtonian Three-Body Planar Periodic Orbits. Physical Review Letters, 110, Article ID: 114301.
http://dx.doi.org/10.1103/physrevlett.110.114301
[15]  Meriam, J.L. (1975) Dynamics. SI Version, 2nd Edition, Article 20, John Wiley & Sons, Canada.
[16]  Battaner, E. and Estrella, F. (2000) The Rotation Curve of Spiral Galaxies and Its Cosmological Implications. Fundamentals of Cosmic Physics, 21, 1-154.
http://arxiv.org/abs/astro-ph/0010475v1  
[17]  Harrison, E. (2003) Cosmology—The Science of the Universe. 2nd Edition, Cambridge University Press, Cambridge.
[18]  Turner, D.G. (2014) An Eclectic View of Our Milky Way Galaxy. Canadian Journal of Physics, 92, 959-963.
http://dx.doi.org/10.1139/cjp-2013-0429

Full-Text


Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133