The building materials commonly used are energy-intensive, non-ecological, and unsuitable for climatic conditions. For this reason, various research projects have been initiated to develop efficient, appropriate, and accessible building materials. Much of this research focuses on valorizing local materials and available waste. In our study, laterite and bottle glass powder are valorized in the Compressed Earth Bricks (CEB) formulation fired at 750?C. X-ray fluorescence spectrometry and Attenuated Total Reflectance Fourier Transform Infrared analyzed the chemical composition and chemical bonds. The physicochemical characteristics of the samples, including water absorption and density, were then determined according to standard NF EN 771-1 and ASTM C20-00, respectively. The mechanical analyses of the test pieces were carried out according to standard NF P18-406. Mineralogy of raw materials and the specimens was obtained by X-ray diffraction. Laterite contains significant amounts of 64% kaolinite, 12% hematite, 11% muscovite, 7% goethite, and 5% quartz. Bottle glass powder consists mainly of a glassy phase of amorphous silica and quartz. The 25% glass powder specimens (PV25) had a mechanical strength (11.70 MPa) well over the minimum requirement (4 MPa) for a single plane structure. The thermal performance showed that the 25% amended specimens had a higher thermal conductivity (0.51 W?m?1?K?1) than the control specimens (0.44 W?m?1?K?1). As for the thermal diffusivity, the fired CEB amended by 25% has a better thermal inertia (0.22 mm2/s compared to 0.33 mm2/s for the control). 25% amended bricks have been shown to offer superior thermal comfort compared to the controls due to their low thermal diffusivity.
References
[1]
Ouedraogo, R.D., Bakouan, C., Sorgho, B., Guel, B. and Bonou, L.D. (2020) Caractérisation d’une latérite naturelle du Burkina Faso en vue de l’élimination de l’arsenic (III) et l’arsenic (V) dans les eaux souterraines. International Journal of Biological and Chemical Sciences, 13, 2959-2977. https://doi.org/10.4314/ijbcs.v13i6.41
[2]
Sanou, I. (2019) Mineralogy, Physical and Mechanical Properties of Adobes Stabilized with Cement and Rice Husk Ash. Science Journal of Chemistry, 7, 1-10. https://doi.org/10.11648/j.sjc.20190701.11
[3]
Zhang, Z., Wong, Y.C., Arulrajah, A. and Horpibulsuk, S. (2018) A Review of Studies on Bricks Using Alternative Materials and Approaches. Construction and Building Materials, 188, 1101-1118. https://doi.org/10.1016/j.conbuildmat.2018.08.152
[4]
Nshimiyimana, P., Fagel, N., Messan, A., Wetshondo, D.O. and Courard, L. (2020) Physico-Chemical and Mineralogical Characterization of Clay Materials Suitable for Production of Stabilized Compressed Earth Blocks. Construction and Building Materials, 241, Article ID: 118097. https://doi.org/10.1016/j.conbuildmat.2020.118097
[5]
Zhang, L. (2013) Production of Bricks from Waste Materials—A Review. Construction and Building Materials, 47, 643-655. https://doi.org/10.1016/j.conbuildmat.2013.05.043
[6]
Millogo, Y., Aubert, J., Hamard, E. and Morel, J. (2015) How Properties of Kenaf Fibers from Burkina Faso Contribute to the Reinforcement of Earth Blocks. Materials, 8, 2332-2345. https://doi.org/10.3390/ma8052332
[7]
Abessolo, D., Biwole, A.B., Fokwa, D., Ganou Koungang, B.M. and Yebga, B.N. (2020) Effets de la Longueur et de la Teneur des Fibres de Bambou sur les Propriétés Physicomécaniques et Hygroscopiques des Blocs de Terre Comprimée (BTC) Utilisés dans la Construction. Afrique Science, 16, 13-22.
[8]
Djadouf, S., Tahakourt, A., Chelouah, N. and Merabet, D. (2011) Étude de l’Influence des Ajouts (Grignon d’Olive et Foin) sur les Caractéristiques Physico-Mécaniques de la Brique de Terre Cuite. Communication Science & Technologie, 9, 1-7.
[9]
Sory, N., Ouedraogo, M., Messan, A., Sanou, I., Sawadogo, M., Jeremy Ouedraogo, K., et al. (2022) Mechanical, Thermal and Hydric Behavior of the Bio-Sourced Compressed Earth Block (B-CEB) Added to Peanut Shells Powder. Advances in Materials, 11, 1-13. https://doi.org/10.11648/j.am.20221101.11
[10]
Bobet, O., Nassio, S., Seynou, M., Remy, B., Zerbo, L., Sanou, I., et al. (2020) Characterization of Peanut Shells for Their Valorization in Earth Brick. Journal of Minerals and Materials Characterization and Engineering, 8, 301-315. https://doi.org/10.4236/jmmce.2020.84018
[11]
Milohin, G.S.G. (2019) Valorisation de Rebuts de Bouteilles en Verre et des Cendres de Bois dans la Fabrication de Briques en Argile Cuite. Master’s Thesis, Université d’Abomey-Calavi (Bénin).
[12]
Verghese, K., Lewis, H., Lockrey, S. and Williams, H. (2013) The Role of Packaging in Minimising Food Waste in the Supply Chain of the Future. Technical Report, 3, 1-49. https://doi.org/10.13140/2.1.4188.5443
[13]
Xin, Y., Robert, D., Mohajerani, A., Tran, P. and Pramanik, B.K. (2023) Transformation of Waste-Contaminated Glass Dust in Sustainable Fired Clay Bricks. Case Studies in Construction Materials, 18, e01717. https://doi.org/10.1016/j.cscm.2022.e01717
[14]
Association Française de Normalisation (AFNOR) (1993) Sols Reconaissance et Essais-Détermination des Limites d’Atterberg. Limite de Liquidité à la Coupelle-Limite-de Plasticité au Rouleau. NF P 94-051.
[15]
Yvon, J., Liétard, O., Cases, J. and Delon, J. (1982) Minéralogie des argiles kaoliniques des Charentes. Bulletin de Minéralogie, 105, 431-437. https://doi.org/10.3406/bulmi.1982.7565
[16]
Association Française de Normalisation (AFNOR) (2004) Spécifica-tions pour éléments de maçonnerie Partie1: Briques de terre cuite. NF EN 771-1.
[17]
ASTM C20-00 (2010) Standard Test Methods for Apparent Porosity, Water Absorption, Apparent Specific Gravity, and Bulk Density of Burned Refractory Brick and Shapes by Boiling Water.
[18]
Association Française de Normalisation (1981) Essai de Compression des Eprouvettes en Béton Durci. AFNOR. NF P 18-406.
[19]
Turco, C., Paula Junior, A., Jacinto, C., Fernandes, J., Teixeira, E. and Mateus, R. (2024) Influence of Particle Size on Compressed Earth Blocks Properties and Strategies for Enhanced Performance. Applied Sciences, 14, Article 1779. https://doi.org/10.3390/app14051779
[20]
Dondi, M., Guarini, G., Raimondo, M. and Zanelli, C. (2009) Recycling PC and TV Waste Glass in Clay Bricks and Roof Tiles. Waste Management, 29, 1945-1951. https://doi.org/10.1016/j.wasman.2008.12.003
[21]
Izemmouren, O. (2016) Effet des Ajouts Minéraux sur la Durabilité des Briques de Terre Comprimée. Master’s Thesis, Université Mohamed Khider-Biskra.
[22]
Rafiq, S.K. (2022) Impact of Glass Waste on the Flexural, Compressive, and Direct Tension Bonding Strengths of Masonry Bricks. Journal of Engineering, 28, 85-106. https://doi.org/10.31026/j.eng.2022.11.07
Le Losq, C., Tarrago, M., Blanc, W., Georges, P., Hennet, L., Zanghi, D., et al. (2022) Méthodes d’analyse des verres. Matériaux & Techniques, 110, Article No. 403. https://doi.org/10.1051/mattech/2022041
[25]
Sory, D., Sanou, Y., Kaboré, R. and Paré, S. (2024) Efficiency of Two Laterites in Cyanide Removal from Aqueous Solutions: Equilibrium and Kinetic Studies. Science Journal of Analytical Chemistry, 12, 38-45. https://doi.org/10.11648/j.sjac.20241203.12
[26]
Ouattara, S., Sorgho, B., Sawadogo, M., Sawadogo, Y., Seynou, M., Blanchart, P., et al. (2021) Development and Characterization of Geopolymers Based on a Kaolinitic Clay. Science Journal of Chemistry, 9, 160-170. https://doi.org/10.11648/j.sjc.20210906.15
[27]
Sawadogo, Y., Zerbo, L., Sawadogo, M., Seynou, M., Gomina, M. and Blanchart, P. (2020) Characterization and Use of Raw Materials from Burkina Faso in Porcelain Formulations. Results in Materials, 6, Article ID: 100085. https://doi.org/10.1016/j.rinma.2020.100085
[28]
Behim, M. and Ali Boucetta, T. (2013) Valorisation du verre à bouteille comme addition fine dans les bétons autoplaçants. Environnement, Ingénierie & Développement, 65, 20-28. https://doi.org/10.4267/dechets-sciences-techniques.932
[29]
Phonphuak, N., Kanyakam, S. and Chindaprasirt, P. (2016) Utilization of Waste Glass to Enhance Physical-Mechanical Properties of Fired Clay Brick. Journal of Cleaner Production, 112, 3057-3062. https://doi.org/10.1016/j.jclepro.2015.10.084
[30]
Bouchikhi, A. (2020) Optimisation de la Valorisation des Déchets de Verre et de Sédiments dans des Liants Recomposés: Activation—Formulation de Mortiers—Stabilisation Physico-Chimique. Ph.D. Thesis, Ecole nationale supérieure Mines-Télécom Lille Douai.
[31]
Siddique, F. (2008) Waste Materials and By-Products in Concrete. Springer Press.
[32]
Association Française de Normalisation (AFNOR), XP P13-901 (2001) Blocs de terre comprimée pour murs et cloisons: définitions, spécifications, méthodes d’essai et conditions de réception, Association française de normalisation.
[33]
Ayadat, T. and Ouali, S. (1999) Identification des sols affaissables basée sur les limites d’Atterberg. Revue Française de Géotechnique, No. 86, 53-56. https://doi.org/10.1051/geotech/1999086053
[34]
Levacher, D., Suriray, A., Ndahirwa, D., Zmamou, H., Leblanc, N. and Shimpo, T. (2025) Sediment-Based Unfired Bricks Reinforced with Waste Flax Fibers: Implementation, Physical Aspects and Kinetics of Air Drying—Part I. Applied Sciences, 15, Article 909. https://doi.org/10.3390/app15020909
[35]
Glocheux, Y., Pasarín, M.M., Albadarin, A.B., Allen, S.J. and Walker, G.M. (2013) Removal of Arsenic from Groundwater by Adsorption onto an Acidified Laterite By-product. Chemical Engineering Journal, 228, 565-574. https://doi.org/10.1016/j.cej.2013.05.043
[36]
Liew, Y., Heah, C., Mohd Mustafa, A.B. and Kamarudin, H. (2016) Structure and Properties of Clay-Based Geopolymer Cements: A Review. Progress in Materials Science, 83, 595-629. https://doi.org/10.1016/j.pmatsci.2016.08.002
[37]
Tchadjié, L.N., Djobo, J.N.Y., Ranjbar, N., Tchakouté, H.K., Kenne, B.B.D., Elimbi, A., et al. (2016) Potential of Using Granite Waste as Raw Material for Geopolymer Synthesis. Ceramics International, 42, 3046-3055. https://doi.org/10.1016/j.ceramint.2015.10.091
[38]
Olaremu, A.G. (2015) Physico-Chemical Characterization of Akoko Mined Kaolin Clay. Journal of Minerals and Materials Characterization and Engineering, 3, 353-361. https://doi.org/10.4236/jmmce.2015.35038
[39]
Uchino, T., Sakka, T., Hotta, K. and Iwasaki, M. (1989) Attenuated Toatal Reflectance Fourier-Transform Infrared Spectra of a Hydrated Sodium Soilicate Glass. Journal of the American Ceramic Society, 72, 2173-2175. https://doi.org/10.1111/j.1151-2916.1989.tb06051.x
[40]
Criado, M., Fernández-Jiménez, A., Palomo, A., Sobrados, I. and Sanz, J. (2008) Effect of the SiO2/Na2O Ratio on the Alkali Activation of Fly Ash. Part II: 29Si MAS-NMR Survey. Microporous and Mesoporous Materials, 109, 525-534. https://doi.org/10.1016/j.micromeso.2007.05.062
[41]
Kamwa, R.A.T., Tome, S., Nemaleu, J.G.D., Noumbissie, L.T., Tommes, B., Eguekeng, I., et al. (2023) Effect of Curing Temperature on Properties of Compressed Lateritic Earth Bricks Stabilized with Natural Pozzolan-Based Geopolymer Binders Synthesized in Acidic and Alkaline Media. Arabian Journal for Science and Engineering, 48, 16151-16165. https://doi.org/10.1007/s13369-023-08069-0
[42]
Kazmi, S.M.S., Munir, M.J., Wu, Y., Hanif, A. and Patnaikuni, I. (2018) Thermal Performance Evaluation of Eco-Friendly Bricks Incorporating Waste Glass Sludge. Journal of Cleaner Production, 172, 1867-1880. https://doi.org/10.1016/j.jclepro.2017.11.255
[43]
Kim, J., Yi, C. and Zi, G. (2015) Waste Glass Sludge as a Partial Cement Replacement in Mortar. Construction and Building Materials, 75, 242-246. https://doi.org/10.1016/j.conbuildmat.2014.11.007
[44]
Eliche-Quesada, D., Martínez-García, C., Martínez-Cartas, M.L., Cotes-Palomino, M.T., Pérez-Villarejo, L., Cruz-Pérez, N., et al. (2011) The Use of Different Forms of Waste in the Manufacture of Ceramic Bricks. Applied Clay Science, 52, 270-276. https://doi.org/10.1016/j.clay.2011.03.003
[45]
Sandra, N. (2024) Influence of Firing Temperature on the Mechanical Properties of Bricks. International Journal of Geomate, 26, 124-131. https://doi.org/10.21660/2024.117.g13381
[46]
Zemánek, D., Lang, K., Tvrdík, L., Všianský, D., Nevřivová, L., Štursa, P., et al. (2021) Development and Properties of New Mullite Based Refractory Grog. Materials, 14, Article 779. https://doi.org/10.3390/ma14040779
[47]
Tchadjie Noumbissie, L. (2012) Comportement Thermique des Géopolymères Ob-tenus à partir d’une Argile Kaolinite. Master’s Thesis, Université de Yaoundé I.
[48]
SNI 15-2094-2000 (2000) Indonesia Standard. Massive Red Bricks for Masonry Works. National Standardization Agency of Indonesia.
[49]
Omar, M.A.Z.B. (2023) Flexural Strength of Plain Concrete Beam Strengthened with Woven Kenaf FRP Plate: Experimental Works and Numerical Modelling. Ph.D. Thesis, University Tun Hussein Onn (Malaysia).
[50]
Bohi, Z.P.B. (2008) Caractérisation des Sols Latéritiques Utilisés en Con-struction Routière: Le Cas de la Région de l’AGNEBY (Cote d’Ivoire). Ph.D. Thesis, École Nationale des ponts et chaussées.
[51]
Correa-Jaramillo, R. and Hernández-Olivares, F. (2024) Sustainability in Construction: Geopolymerized Coating Bricks Made with Ceramic Waste. Materials, 18, Article 103. https://doi.org/10.3390/ma18010103
[52]
(2003) Masonry Units and Segmental Pavers and Flags-Methods of Test Determining Compressive Strength of Masonry Units. AS/NZS 4456.4, SAI Global Limited.
[53]
Hantaniaina, R., Miravo Finarit, R.K., Jean de Dieu, R. and Antoine, A.P. (2023) Contribution a L’Etude des Briques de Terre Comprimées et Stabilisées par le Mélange Chaux—Ciment sur la Satisfaction des Occupants dans les Résidences Modernes Durables Naturellement Ventilées En Zone Tropicale «Cas De L’Ile De Madagascar». International Journal of Progressive Sciences and Technologies, 39, 226-234. https://doi.org/10.52155/ijpsat.v39.1.5396
[54]
Fouladi, N., Hamidpour, S., Sedghamiz, M.A. and Rahimpour, M.R. (2021) Application of Biomass Ash for Brick Manufacturing. In: Rahimpour, M.R., et al., Eds., Advances in Bioenergy and Microfluidic Applications, Elsevier, 407-429. https://doi.org/10.1016/b978-0-12-821601-9.00017-0
[55]
Miraucourt, D. (2017) Stabilisation du Matériau Terre Crue pour Application en Brique de Terre Comprimée au Burkina Faso. Master’s Thesis, 2iE—Institut International d’Ingénierie de l’Eau et de l’Environnement.