All Title Author
Keywords Abstract

Publish in OALib Journal
ISSN: 2333-9721
APC: Only $99

ViewsDownloads

Relative Articles

More...

Preparation and Characterization of Clay Soils for Applications in Cyanide Removal from Mining Wastewater

DOI: 10.4236/jmmce.2025.131001, PP. 1-17

Keywords: Clays, Chemical Properties, Mineralogical Compostion, Cyanide, Metal-Cyanide Complex, Wastewater

Full-Text   Cite this paper   Add to My Lib

Abstract:

In Burkina Faso, water resources in mining areas are polluted by cyanide, which is released into the environment through mining activities. To mitigate this pollution, two clays named Koro and Kaya were collected in Burkina Faso and characterized using analytical technics. This work aimed to find out a cheap technology based on local soils for water treatment. The objective of the work was to prepare and characterize two local clays for application in mining effluent treatment. Specific surface area and pore dimensions were analyzed using Brunauer, Emmett and Teller method. In addition, anion exchange capacities, chemical composition through X-ray fluorescence and chemical functions by Fourier-transformed Infrared spectroscopy were determined. Mineralogical composition, thermal behavior, microstructure, and surface elemental composition of clays were examined using techniques of X-ray diffraction and scanning electron microscopy coupled with energy dispersive spectroscopy. Results showed that the surface areas of two anionic clays were 64 m2/g and 50 m2/g for Koro and Kaya, respectively. An anion exchange capacity of 126.68 cmol/kg for Koro and 125.13 cmol/kg at pH 11 was found. Chemical and mineralogical analysis showed that the clays were rich in minerals, mainly of illite (24 - 27)%, montmorillonite (23 - 24)% and kaolinite (17 - 26)%, orthosis (9 - 13)%, quartz (5 - 12)%, goethite (3 - 6)% and anorthite (2 - 6)%. Application of clays for the treatment of cyanide solution led to a decrease in intensities of chemical functions and a modification of the surface morphology. Consequently, those clay soils can be used as adsorbents in cyanide removal through column and batch experiments.

References

[1]  Ouedraogo, R., Nyantakyi, E.K., Sorgho, B., Siabi, E.K., Amproche, A.A., Obiri-Yeboah, A., et al. (2022) The Emergence of Artisanal Gold Mining and Local Perceptions in the Hounde Municipality, Burkina Faso. Scientific African, 17, e01306.
https://doi.org/10.1016/j.sciaf.2022.e01306
[2]  Bohbot, J. (2017) L’orpaillage au Burkina Faso: Une aubaine économique pour les populations, aux conséquences sociales et environnementales mal maîtrisées. EchoGéo, 42, 1-19.
https://doi.org/10.4000/echogeo.15150
[3]  Razanamahandry, L.C. (2017) Pollution environnementale par le cyanure et poten-tialités de la bioremédiation dans des zones d’extraction aurifère en Afrique Sub-Saharienne: Cas du Burkina Faso. Thèse Unique, Institut International d’Ingénierie de l’Eau et de l’Environnement, 223.
[4]  Wang, P., Bai, Y., Yao, C., Li, X., Zhou, L., Wang, W., et al. (2017) Intracellular and in Vivo Cyanide Mapping via Surface Plasmon Spectroscopy of Single Au-Ag Nanoboxes. Analytical Chemistry, 89, 2583-2591.
https://doi.org/10.1021/acs.analchem.6b04860
[5]  Malhotra, S., Pandit, M., Kapoor, J. and Tyagi, D. (2004) Photo‐Oxidation of Cyanide in Aqueous Solution by the UV/H2O2 Process. Journal of Chemical Technology & Biotechnology, 80, 13-19.
https://doi.org/10.1002/jctb.1127
[6]  Yadollahi, A. (2019) An Investigation on the Possibility of Cyanide Removal from the Industrial Wastewaters Using the Smectite Clay Minerals from the Mehrjan Area. Journal of Mineral Resources Engineering, 4, 99-110.
https://doi.org/10.30479/jmre.2019.9290.1167
[7]  Mbadcam, J.K., Ngomo, H.M., Tcheka, C., Rahman, N., Djoyo, H.S. and Kouotou, D. (2009) Batch Equilibrium Adsorption of Cyanides from Aqueous Solution onto Copper-and Nickel-Impregnated Powder Activated Carbon and Clay. Journal of Environmental Protection Science, 3, 53-57.
[8]  Halet, F., Yeddou, A.R., Chergui, A., Chergui, S., Nadjemi, B. and Ould-Dris, A. (2015) Removal of Cyanide from Aqueous Solutions by Adsorption on Activated Carbon Prepared from Lignocellulosic By-Products. Journal of Dispersion Science and Technology, 36, 1736-1741.
https://doi.org/10.1080/01932691.2015.1005311
[9]  Dash, R.R., Balomajumder, C. and Kumar, A. (2009) Removal of Cyanide from Water and Wastewater Using Granular Activated Carbon. Chemical Engineering Journal, 146, 408-413.
https://doi.org/10.1016/j.cej.2008.06.021
[10]  Manyuchi, M.M., Sukdeo, N. and Stinner, W. (2022) Potential to Remove Heavy Metals and Cyanide from Gold Mining Wastewater Using Biochar. Physics and Chemistry of the Earth, Parts A/B/C, 126, Article ID: 103110.
https://doi.org/10.1016/j.pce.2022.103110
[11]  Peroxide, H., Khodadadi, A., Abdolahi, M. and Teimoury, P. (2005) Detoxification of Cyanide in Gold Processing Wastewater. Journal of Environmental Health Science and Engineering, 2, 177-182.
[12]  Young, C.A., Jordan, T.S. and Tech, M. (2011) Cyanide Remediation: Current and Technologies. Rapport of Department of Metallurgical Engineering (Montana), 104-129.
[13]  Bergaya, F., Theng, B.K.G. and Lagaly, G. (2006) Handbook of Clay Science. Developments in Clay Science, Vol. 1, Elsevier, 1224.
[14]  Madejová, J., Pálková, H. and Komadel, P. (2010) IR Spectroscopy of Clay Minerals and Clay Nanocomposites. In: Yarwood, J., et al., Eds., Spectroscopic Properties of Inorganic and Organometallic Compounds, The Royal Society of Chemistry, 22-71.
https://doi.org/10.1039/9781849730853-00022
[15]  Sadik, C., El Amrani, I. and Albizane, A. (2012) Influence de la nature chimique et minéralogique des argiles et du processus de fabrication sur la qualité des carreaux céramiques. MATEC Web of Conferences, 2, Article No. 01016.
https://doi.org/10.1051/matecconf/20120201016
[16]  Efeovbokhan, V.E., Olurotimi, O.O., Yusuf, E.O., Abatan, O.G. and Alagbe, E.E. (2019) Production of Clay Filters for Waste Water Treatment. Journal of Physics: Conference Series, 1378, Article ID: 032028.
https://doi.org/10.1088/1742-6596/1378/3/032028
[17]  Combéré, W., Yonli, A.H. and Djandé, A. (2017) Elimination du chrome trivalent des eaux par des zéolithes échangées au fer et des argiles naturelles du Burkina Faso. Journal de La Société Ouest-Africaine de Chimie, 43, 26-30.
[18]  Brahima, S., Samuel, P., Boubié, G., Lamine, Z., Karfa, T. and Ingmar, P. (2011) Etude d’une argile locale du Burkina Faso à des fins de décontamination en Cu2+, Pb2+ et Cr3+. Journal de la Société Ouest-Africaine de Chimie, 31, 49-59.
[19]  Fernandez, R., Martirena, F. and Scrivener, K.L. (2011) The Origin of the Pozzolanic Activity of Calcined Clay Minerals: A Comparison between Kaolinite, Illite and Montmorillonite. Cement and Concrete Research, 41, 113-122.
https://doi.org/10.1016/j.cemconres.2010.09.013
[20]  Qlihaa, A., Dhimni, S., Melrhaka, F., Hajjaji, N. and Srhiri, A. (2016) Caractérisation physico-chimique d’une argile Marocaine. Journal of Materials and Environmental Science, 7, 1741-1750.
[21]  Errais, E. (2011) Réactivité de surface d’argiles naturelles Etude de l’adsorption de colorants anioniques. Thèse Unique, Géochimie de l’Environnement, Université de Strasbourg.
[22]  Pansu, M. and Gautheyrou, J. (2006) Anion Exchange Capacity. Springer.
https://doi.org/101007/978-3-540-31211-6_27
[23]  Laibi, A.B., Gomina, M., Sorgho, B., Sagbo, E., Blanchart, P., Boutouil, M., et al. (2017) Caractérisation physico-chimique et géotechnique de deux sites argileux du Bénin en vue de leur valorisation dans l’éco-construction. International Journal of Biological and Chemical Sciences, 11, 499-514.
https://doi.org/10.4314/ijbcs.v11i1.40
[24]  Ouedraogo, R.D., Bakouan, C., Sorgho, B., Guel, B. and Bonou, L.D. (2020) Caractérisation d’une latérite naturelle du Burkina Faso en vue de l’élimination de l’arsenic (III) et l’arsenic (V) dans les eaux souterraines. International Journal of Biological and Chemical Sciences, 13, 2959-2977.
https://doi.org/10.4314/ijbcs.v13i6.41
[25]  Kaboré, R., Yacouba Sanou, Konaté, A. and Paré, S. (2024) Study of the Efficiency of Two Clays Soils for Cyanide Removal in Water: Kinetic and Equilibrium Modelling. Asian Journal of Physical and Chemical Sciences, 12, 1-14.
https://doi.org/10.9734/ajopacs/2024/v12i2220
[26]  Fies, J., Stengel, P., Bourlet, M., Horoyan, J. and Jeandet, C. (1981) Densité texturale de sols naturels II. Eléments d’interprétation. Agronomie, 1, 659-666.
https://doi.org/10.1051/agro:19810807
[27]  Abebe, B., Murthy, H.C.A. and Amare, E. (2018) Summary on Adsorption and Photocatalysis for Pollutant Remediation: Mini Review. Journal of Encapsulation and Adsorption Sciences, 8, 225-255.
https://doi.org/10.4236/jeas.2018.84012
[28]  Önal, Y., Akmil-Başar, C. and Sarıcı-Özdemir, Ç. (2007) Investigation Kinetics Mechanisms of Adsorption Malachite Green onto Activated Carbon. Journal of Hazardous Materials, 146, 194-203.
https://doi.org/10.1016/j.jhazmat.2006.12.006
[29]  Diatta, M.T. (2016) Matières premières argileuses du Sénégal: Caractéristiques et applications aux produits céramiques de grande diffusion Thèse en Cotutelle, Matériaux, Université de Limoges, 158.
[30]  Lamine, S.M. (2013) Étude des propriétés adsorbantes des charbons activés issus des noyaux de dattes. Application au traitement d’effluent aqueux. Thèse Unique, Génie Chimique, Université Badji Mokhtar-Annaba (Algérie), 98.
[31]  Sedjro, Y., Kiki, T., Sedjro, Y. and Kiki, T. (2017) Caractérisation minéralogique, thermique et microscopique des sols fins en technique routière. Thèse Unique, Science de l’Ingénieur, Université de Bordeaux, 211.
[32]  Zerbo, L. (2009) Transformations thermiques et reorganisation structurale d’une argile du Burkina Faso. Thèse Unique, Chimie, Université Joseph Ki-Zerbo, 163.
[33]  Abdoulkader, M., Malam Salmanou Souleymane, I., Bouba, H., Toure Amadou, A., Zibo, G. and Ibrahim, W. (2021) Caractérisation Physico-Chimique et Minéralogique des Argiles De La Carrière De Mirriah, Région De Zinder, Utilisées Dans La Poterie. European Scientific Journal, ESJ, 17, 120-132.
https://doi.org/10.19044/esj.2021.v17n3p120
[34]  Botz, M.M., Mudder, T.I. and Akcil, A.U. (2016) Cyanide Treatment: Physical, Chemical, and Biological Processes. In: Adams, M.D., Ed., Gold Ore Processing: Project Development and Operations, Elsevier, 619-645.
https://doi.org/10.1016/b978-0-444-63658-4.00035-9
[35]  Tertre, E. (2005) Adsorption de Cs+, Ni2+ et des lanthanides sur une kaolinite et une smectite jusqu’à 150˚C: Étude expérimentale et modélisation. Thèse Unique, Géochimie, Université Toulouse III.
[36]  Jaiswal, A., Banerjee, S., Mani, R. and Chattopadhyaya, M.C. (2013) Synthesis, Characterization and Application of Goethite Mineral as an Adsorbent. Journal of Environmental Chemical Engineering, 1, 281-289.
https://doi.org/10.1016/j.jece.2013.05.007
[37]  Sorgho, B., Bressollier, P., Guel, B., Zerbo, L., Ouedraogo, R., Gomina, M., et al. (2016) Étude des propriétés mécaniques des géomateriaux argileux associant la décoction de Parkia Biglobosa (néré). Comptes Rendus. Chimie, 19, 895-901.
https://doi.org/10.1016/j.crci.2016.01.016
[38]  Colin-Garcia, M., Heredia, A., Negron-Mendoza, A., Ortega, F., Pi, T. and Ramos-Bernal, S. (2014) Adsorption of HCN onto Sodium Montmorillonite Dependent on the Ph as a Component to Chemical Evolution. International Journal of Astrobiology, 13, 310-318.
https://doi.org/10.1017/s1473550414000111
[39]  Rennert, T., Kaufhold, S. and Mansfeldt, T. (2005) Sorption of Iron‐Cyanide Complexes on Goethite Investigated in Long‐Term Experiments. Journal of Plant Nutrition and Soil Science, 168, 233-237.
https://doi.org/10.1002/jpln.200421602
[40]  Joussein, E., Petit, S. and Decarreau, A. (2001) Une nouvelle méthode de dosage des minéraux argileux en mélange par spectroscopie IR. Comptes Rendus de lAcadémie des SciencesSeries IIAEarth and Planetary Science, 332, 83-89.
https://doi.org/10.1016/s1251-8050(01)01511-7
[41]  Ritz, M., Vaculíková, L. and Plevová, E. (2010) Identification of Clay Minerals by Infrared Spectroscopy and Discriminant Analysis. Applied Spectroscopy, 64, 1379-1387.
https://doi.org/10.1366/000370210793561592
[42]  Bakouan, C. (2018). Caractérisation de quelques sites latéritiques du Burkina Faso: Application à l’élimination de l’arsenic (III) et (V) dans les eaux souterraines. Thèse Unique, Chimie Université Joseph Ki-Zerbo, 241.
[43]  Sdiri, A.T., Higashi, T. and Jamoussi, F. (2013) Adsorption of Copper and Zinc onto Natural Clay in Single and Binary Systems. International Journal of Environmental Science and Technology, 11, 1081-1092.
https://doi.org/10.1007/s13762-013-0305-1
[44]  Blanchard, M., Balan, E., Giura, P., Béneut, K., Yi, H., Morin, G., et al. (2013) Infrared Spectroscopic Properties of Goethite: Anharmonic Broadening, Long-Range Electrostatic Effects and Al Substitution. Physics and Chemistry of Minerals, 41, 289-302.
https://doi.org/10.1007/s00269-013-0648-7
[45]  Tomić, Z., Makreski, P. and Gajić, B. (2009) Identification and Spectra-Structure Determination of Soil Minerals: Raman Study Supported by IR Spectroscopy and X‐Ray Powder Diffraction. Journal of Raman Spectroscopy, 41, 582-586.
https://doi.org/10.1002/jrs.2476
[46]  Chatterjee, S. and De, S. (2015) Application of Novel, Low-Cost, Laterite-Based Adsorbent for Removal of Lead from Water: Equilibrium, Kinetic and Thermodynamic Studies. Journal of Environmental Science and Health, Part A, 51, 193-203.
https://doi.org/10.1080/10934529.2015.1094321
[47]  Lakshmipathiraj, P., Narasimhan, B.R.V., Prabhakar, S. and Bhaskar Raju, G. (2006) Adsorption Studies of Arsenic on Mn-Substituted Iron Oxyhydroxide. Journal of Colloid and Interface Science, 304, 317-322.
https://doi.org/10.1016/j.jcis.2006.09.024
[48]  Kuligiewicz, A., Derkowski, A., Szczerba, M., Gionis, V. and Chryssikos, G.D. (2015) Revisiting the Infrared Spectrum of the Water—Smectite Interface. Clays and Clay Minerals, 63, 15-29.
https://doi.org/10.1346/ccmn.2015.0630102
[49]  Laversin, H. (2013) Technique de préparation des minéraux argileux en vue de l’analyse par diffraction des Rayons X et introduction à l’interprétation des diagrammes. Thèse Unique Chimie, Université du Litto, 175.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133