All Title Author
Keywords Abstract

Publish in OALib Journal
ISSN: 2333-9721
APC: Only $99

ViewsDownloads

Relative Articles

More...

Ceramic Properties of Three Specimens of Alluvial Clays Used in Local Constructions from Mbouda Clay Deposit, West Cameroon

DOI: 10.4236/jmmce.2024.125017, PP. 265-279

Keywords: Sand, Bricks, Clays, Mechanical Properties, Local Constructions

Full-Text   Cite this paper   Add to My Lib

Abstract:

The Mbouda alluvial deposit is located at the foot of the Bamboutos mountains (West Cameroon) where three types of clayey materials are widespread. The populations collect these clays in their natural state in view of constructions using fired bricks or compressed blocks. Unfortunately, these buildings are not strong. This study investigates the causes of the strengthlessness of buildings and suggests solutions to overcome the difficulty. The research content includes field and laboratory studies. The methodology consists of sampling black (AN), white (AB) and red (AR) clays specimens identified in the study area and analysing them simultaneously at MIPROMALO (Cameroon) and at ACME LAB in Vancouver (Canada). The results obtained show a high sand content in the samples AN (64%), AB (55.2%), AR (30.9%). The compressive strength of the built specimens is low at 900?C considered as the traditional firing temperature AN (0.94 MPa), AB (5.25 MPa), AR (2.18 MPa). The mineralogical series are identically made by kaolinite, chlorite, gibbsite, quartz, muscovite, biotite, goethite, magnetite and hematite. Silica (SiO2) presents higher contents AN (52.87%), AB (48.02%), AR (47.68%) followed by alumina (Al2O3) AN (29.96%), AB (28.13%), AR (24.72%). The other elements are poorly represented.

References

[1]  Delbecque, C. (2001) Approche contemporaine de la construction en terre. Histoire de la construction en terre, 22.
http://www.cd2e.com/sites/default/files/eco-construction%20Ch.%20Delbecque_histoire_construction_terre_oct11.pdf,p22
[2]  Rigassi, V. (1995) BTC Production Manual. CRA Terre-EAG.
[3]  Muheise-Araalia, D. and Pavia, S. (2021) Properties of Unfired, Illitic-Clay Bricks for Sustainable Construction. Construction and Building Materials, 268, Article 121118.
https://doi.org/10.1016/j.conbuildmat.2020.121118
[4]  Celik, H. (2010) Technological Characterization and Industrial Application of Two Turkish Clays for the Ceramic Industry. Applied Clay Science, 50, 245-254.
https://doi.org/10.1016/j.clay.2010.08.005
[5]  Ngun, B.K., Mohamad, H., Sulaiman, S.K., Okada, K. and Ahmad, Z.A. (2011) Some Ceramic Properties of Clays from Central Cambodia. Applied Clay Science, 53, 33-41.
https://doi.org/10.1016/j.clay.2011.04.017
[6]  Zurita Ares, M.C., Pérez, M.R., Quesada Carballo, L. and Fernández, J.M. (2015) Assessment of Clays from Puertollano (Spain) for Their Use in Fine Ceramic by Diffuse Reflectance Spectroscopy. Applied Clay Science, 108, 135-143.
https://doi.org/10.1016/j.clay.2015.02.010
[7]  Semiz, B. (2017) Characteristics of Clay-Rich Raw Materials for Ceramic Applications in Denizli Region (Western Anatolia). Applied Clay Science, 137, 83-93.
https://doi.org/10.1016/j.clay.2016.12.014
[8]  Pardo, F., Jordan, M.M. and Montero, M.A. (2018) Ceramic Behaviour of Clays in Central Chile. Applied Clay Science, 157, 158-164.
https://doi.org/10.1016/j.clay.2018.02.044
[9]  González-López, J.R., Juárez-Alvarado, C.A., Ayub-Francis, B. and Mendoza-Rangel, J.M. (2018) Compaction Effect on the Compressive Strength and Durability of Stabilized Earth Blocks. Construction and Building Materials, 163, 179-188.
https://doi.org/10.1016/j.conbuildmat.2017.12.074
[10]  Dewaele, S., Ottenburgs, R., Van Oyen, P. and Viaene, W. (2003) Prospection and Evaluation of Clay Deposits in the Republic of Ireland. In: Degryse, P. and Elsen, J., Eds., Industrial Minerals Resources, Characteristics and Applications, Leuven University Press, 97-105.
[11]  Millogo, Y., Hajjaji, M. and Ouedraogo, R. (2008) Microstructure and Physical Properties of Lime-Clayey Adobe Bricks. Construction and Building Materials, 22, 2386-2392.
https://doi.org/10.1016/j.conbuildmat.2007.09.002
[12]  Nyakairu, G.W.A., Kurzweil, H. and Koeberl, C. (2002) Mineralogical, Geochemical, and Sedimentological Characteristics of Clay Deposits from Central Uganda and Their Applications. Journal of African Earth Sciences, 35, 123-134.
https://doi.org/10.1016/s0899-5362(01)00077-x
[13]  Baccour, H., Medhioub, M., Jamoussi, F., Mhiri, T. and Daoud, A. (2008) Mineralogical Evaluation and Industrial Applications of the Triassic Clay Deposits, Southern Tunisia. Materials Characterization, 59, 1613-1622.
https://doi.org/10.1016/j.matchar.2008.02.008
[14]  Ferrari, S. and Gualtieri, A. (2006) The Use of Illitic Clays in the Production of Stoneware Tile Ceramics. Applied Clay Science, 32, 73-81.
https://doi.org/10.1016/j.clay.2005.10.001
[15]  Andji, J.Y.Y., Toure, A.A., Kra, G., Jumas, J.C., Yvon, J. and Blanchart, P. (2009) Iron Role on Mechanical Properties of Ceramics with Clays from Ivory Coast. Ceramics International, 35, 571-577.
https://doi.org/10.1016/j.ceramint.2008.01.007
[16]  Mahmoudi, S., Srasra, E. and Zargouni, F. (2008) The Use of Tunisian Barremian Clay in the Traditional Ceramic Industry: Optimization of Ceramic Properties. Applied Clay Science, 42, 125-129.
https://doi.org/10.1016/j.clay.2007.12.008
[17]  El Ouahabi, M., Daoudi, L. and Fagel, N. (2014) Mineralogical and Geotechnical Characterization of Clays from Northern Morocco for Their Potential Use in the Ceramic Industry. Clay Minerals, 49, 35-51.
https://doi.org/10.1180/claymin.2014.049.1.04
[18]  Bennour, A., Mahmoudi, S., Srasra, E., Boussen, S. and Htira, N. (2015) Composition, Firing Behavior and Ceramic Properties of the Sejnène Clays (Northwest Tunisia). Applied Clay Science, 115, 30-38.
https://doi.org/10.1016/j.clay.2015.07.025
[19]  Boulingui, J.E., Nkoumbou, C., Njoya, D., Thomas, F. and Yvon, J. (2015) Characterization of Clays from Mezafe and Mengono (Ne-Libreville, Gabon) for Potential Uses in Fired Products. Applied Clay Science, 115, 132-144.
https://doi.org/10.1016/j.clay.2015.07.029
[20]  Hammami-Ben Zaied, F., Abidi, R., Slim-Shimi, N. and Somarin, A.K. (2015) Potentiality of Clay Raw Materials from Gram Area (Northern Tunisia) in the Ceramic Industry. Applied Clay Science, 112, 1-9.
https://doi.org/10.1016/j.clay.2015.03.027
[21]  Boussen, S., Sghaier, D., Chaabani, F., Jamoussi, B. and Bennour, A. (2016) Characteristics and Industrial Application of the Lower Cretaceous Clay Deposits (Bouhedma Formation), Southeast Tunisia: Potential Use for the Manufacturing of Ceramic Tiles and Bricks. Applied Clay Science, 123, 210-221.
https://doi.org/10.1016/j.clay.2016.01.027
[22]  Abdelmalek, B., Rekia, B., Youcef, B., Lakhdar, B. and Nathalie, F. (2017) Mineralogical Characterization of Neogene Clay Areas from the Jijel Basin for Ceramic Purposes (NE Algeria-Africa). Applied Clay Science, 136, 176-183.
https://doi.org/10.1016/j.clay.2016.11.025
[23]  Jordán, M.M., Boix, A., Sanfeliu, T. and de la Fuente, C. (1999) Firing Transformations of Cretaceous Clays Used in the Manufacturing of Ceramic Tiles. Applied Clay Science, 14, 225-234.
https://doi.org/10.1016/s0169-1317(98)00052-0
[24]  Zouaoui, H. and Bouaziz, J. (2017) Physical and Mechanical Properties Improvement of a Porous Clay Ceramic. Applied Clay Science, 150, 131-137.
https://doi.org/10.1016/j.clay.2017.09.002
[25]  Ngon Ngon, G.F., Yongue Fouateu, R., Lecomte Nana, G.L., Bitom, D.L., Bilong, P. and Lecomte, G. (2012) Study of Physical and Mechanical Applications on Ceramics of the Lateritic and Alluvial Clayey Mixtures of the Yaoundé Region (Cameroon). Construction and Building Materials, 31, 294-299.
https://doi.org/10.1016/j.conbuildmat.2011.12.108
[26]  Nzeugang Nzeukou, A., Fagel, N., Njoya, A., Beyala Kamgang, V., Eko Medjo, R. and Chinje Melo, U. (2013) Mineralogy and Physico-Chemical Properties of Alluvial Clays from Sanaga Valley (Center, Cameroon): Suitability for Ceramic Application. Applied Clay Science, 83, 238-243.
https://doi.org/10.1016/j.clay.2013.08.038
[27]  Fadil-Djenabou, S., Ndjigui, P. and Mbey, J.A. (2015) Mineralogical and Physicochemical Characterization of Ngaye Alluvial Clays (Northern Cameroon) and Assessment of Its Suitability in Ceramic Production. Journal of Asian Ceramic Societies, 3, 50-58.
https://doi.org/10.1016/j.jascer.2014.10.008
[28]  Ndjigui, P., Mbey, J.A. and Nzeukou, A.N. (2016) Mineralogical, Physical and Mechanical Features of Ceramic Products of the Alluvial Clastic Clays from the Ngog-Lituba Region, Southern Cameroon. Journal of Building Engineering, 5, 151-157.
https://doi.org/10.1016/j.jobe.2015.11.009
[29]  Yongue-Fouateu, R., Ndimukong, F., Njoya, A., Kunyukubundo, F. and Mbih, P.K. (2016) The Ndop Plain Clayey Materials (Bamenda Area—NW Cameroon): Mineralogical, Geochemical, Physical Characteristics and Properties of Their Fired Products. Journal of Asian Ceramic Societies, 4, 299-308.
https://doi.org/10.1016/j.jascer.2016.05.008
[30]  Tsozué, D., Nzeugang, A.N., Mache, J.R., Loweh, S. and Fagel, N. (2017) Mineralogical, Physico-Chemical and Technological Characterization of Clays from Maroua (Far-North, Cameroon) for Use in Ceramic Bricks Production. Journal of Building Engineering, 11, 17-24.
https://doi.org/10.1016/j.jobe.2017.03.008
[31]  Temga, J.P., Madi, A.B., Djakba, S.B., Zame, P.Z., Angue, M.A., Mache, J.R., et al. (2018) Lime-and Sand-Stabilization of Clayey Materials from the Logone Valley (Lake Chad Basin) for Their Utilisation as Building Materials. Journal of Building Engineering, 19, 472-479.
https://doi.org/10.1016/j.jobe.2018.06.003
[32]  Ekodeck, G.E. and Kamgang, K.B. (2011) Normative Alterology and Advanced Applications a Particular Facet of Aluminosilicate-Bearing Rocks Petrology, with Regard to Their Super-Gene Evolution. Presses Universitaires de Yaoundé, 225.
[33]  Assomo, P.S., Lawou, S.K., Bouba, L. and Beyala, V.K.K. (2022) Géochimie, minéralogie et sélection altérologique des argiles alluviales de la vallée du Nyong à Akonolinga (Cameroun) en vue de leur utilisation dans la production des briques cuites. Journal of the Cameroon Academy of Sciences, 18, 419-436.
https://doi.org/10.4314/jcas.v18i2.3
[34]  Nyassa Ohandja, H., Ntouala, R.F.D., Onana, V.L., Ngo’o Ze, A., Ndzié Mvindi, A.T. and Ekodeck, G.E. (2020) Mineralogy, Geochemistry and Physico-Mechanical Characterization of Clay Mixtures from Sa’a (Center Cameroon): Possibly Use as Construction Materials. SN Applied Sciences, 2, Article No. 1687.
https://doi.org/10.1007/s42452-020-03365-y
[35]  Nzenti, J.P., Bertrand, S.M. and Macaudière, J. (1994) La chaîne panafricaine au Cameroun: Cherchons suture et modèle. 15e Réunion des Sciences de la Terre, Nancy, 99.
[36]  Nzenti, J.P. and Tchoua, F.M. (1995) Les gneiss scapolatiques de la chaîne panafricaine nord équatoriale au Cameroun: Témoins au Précambrien d’une sédimentation évaporitique en bordure nord du craton du Congo. Comptes Rendus de lAcadémie des Sciences, 323, 289-294
[37]  Vicat, J.P. (198) Esquisse géologique du Cameroun. Presses Universitaires de Yaoundé, 9.
[38]  Déruelle, B., Moreau, C., Nkoumbou, C., Kambou, R., Lissom, J., Njonfang, E., et al. (1991) The Cameroon Line: A Review. In: Kampunzu, A.B. and Lubala, R.T., Eds., Magmatism in Extensional Structural Settings, Springer, 274-327.
https://doi.org/10.1007/978-3-642-73966-8_12
[39]  Gountié Dedzo, M., Nédélec, A., Nono, A., Njanko, T., Font, E., Kamgang, P., et al. (2011) Magnetic Fabrics of the Miocene Ignimbrites from West-Cameroon: Implications for Pyroclastic Flow Source and Sedimentation. Journal of Volcanology and Geothermal Research, 203, 113-132.
https://doi.org/10.1016/j.jvolgeores.2011.04.012
[40]  Eslinger, E. and Peaver, D. (1998) Clay Minerals for Petroleum Geologist and Engineers. SEPM Short Course, Economic Paleontologists and Mineralogists, Tulsa, 41.
[41]  Nkalih Mefire, A., Njoya, A., Yongue Fouateu, R., Mache, J.R., Tapon, N.A., Nzeukou Nzeugang, A., et al. (2015) Occurrences of Kaolin in Koutaba (West Cameroon): Mineralogical and Physicochemical Characterization for Use in Ceramic Products. Clay Minerals, 50, 593-606.
https://doi.org/10.1180/claymin.2015.050.5.04
[42]  Njoya, A., Nkoumbou, C., Grosbois, C., Njopwouo, D., Njoya, D., Courtinnomade, A., et al. (2006) Genesis of Mayouom Kaolin Deposit (Western Cameroon). Applied Clay Science, 32, 125-140.
https://doi.org/10.1016/j.clay.2005.11.005
[43]  CDI (1998) Compressed Earth Blocks: Standards Guide-Technology Series No. 11, CRA-Terre-EAG. Brussels-Belgium.
[44]  XP P13-901 (2001) Compressed Earth Blocks for Walls and Partitions: Definitions-Specifications-Test Methods. Delivery Acceptance Condition, French Standard, 20.
[45]  Oti, J.E. (2010) The Development of Unfired Clay Building Materials for Sustainable Building Construction. Ph.D. Thesis, University of Glamorgan.
[46]  Fernandes, J., Peixoto, M., Mateus, R. and Gervásio, H. (2019) Life Cycle Analysis of Environmental Impacts of Earthen Materials in the Portuguese Context: Rammed Earth and Compressed Earth Blocks. Journal of Cleaner Production, 241, Article 118286.
https://doi.org/10.1016/j.jclepro.2019.118286
[47]  Baccour, H., Medhioub, M., Jamoussi, F. and Mhiri, T. (2009) Influence of Firing Temperature on the Ceramic Properties of Triassic Clays from Tunisia. Journal of Materials Processing Technology, 209, 2812-2817.
https://doi.org/10.1016/j.jmatprotec.2008.06.055
[48]  Ouhadi, V.R., Yong, R.N., Goodarzi, A.R. and Safari-Zanjani, M. (2010) Effect of Temperature on the Re-Structuring of the Microstructure and Geo-Environmental Behaviour of Smectite. Applied Clay Science, 47, 2-9.
https://doi.org/10.1016/j.clay.2008.08.008
[49]  Padden, M. and Pavía, S. (2016) An Assessment of Raw Materials for Earth Construction in Co. Offaly, Ireland. Congreso Euro-Americano Rehabend, Patología de la Construcción, Tecnología de la Rehabilitación y Gestión del Patrimonio. Burgos, 121.
[50]  Mahmoudi, S., Srasra, E. and Zargouni, F. (2010) Firing Behaviour of the Lower Cretaceous Clays of Tunisia. Journal of African Earth Sciences, 58, 235-241.
https://doi.org/10.1016/j.jafrearsci.2010.03.004
[51]  Mahmoudi, S., Srasra, E. and Zargouni, F. (2014) Firing Behaviour Clays from Tunisia. Journal of African Earth Sciences, 50, 237-242.
[52]  Mahmoudi, S., Bennour, A., Meguebli, A., Srasra, E. and Zargouni, F. (2016) Characterization and Traditional Ceramic Application of Clays from the Douiret Region in South Tunisia. Applied Clay Science, 127, 78-87.
https://doi.org/10.1016/j.clay.2016.04.010
[53]  Mahmoudi, S., Bennour, A., Srasra, E. and Zargouni, F. (2017) Characterization, Firing Behavior and Ceramic Application of Clays from the Gabes Region in South Tunisia. Applied Clay Science, 135, 215-225.
https://doi.org/10.1016/j.clay.2016.09.023
[54]  Seynou, M., Millogo, Y., Ouedraogo, R., Traoré, K. and Tirlocq, J. (2011) Firing Transformations and Properties of Tiles from a Clay from Burkina Faso. Applied Clay Science, 51, 499-502.
https://doi.org/10.1016/j.clay.2011.01.002
[55]  Milheiro, F.A.C., Freire, M.N., Silva, A.G.P. and Holanda, J.N.F. (2005) Densification Behaviour of a Red Firing Brazilian Kaolinitic Clay. Ceramics International, 31, 757-763.
https://doi.org/10.1016/j.ceramint.2004.08.010
[56]  Carretero, M.I., Dondi, M., Fabbri, B. and Raimondo, M. (2002) The Influence of Shaping and Firing Technology on Ceramic Properties of Calcareous and Non-Calcareous Illitic-Chloritic Clays. Applied Clay Science, 20, 301-306.
https://doi.org/10.1016/s0169-1317(01)00076-x
[57]  Singh, N.B. (2022) Clays and Clay Minerals in the Construction Industry. Minerals, 12, Article 301.
https://doi.org/10.3390/min12030301
[58]  Ahmad, M. and Rashid, K. (2022) Novel Approach to Synthesize Clay-Based Geopolymer Brick: Optimizing Molding Pressure and Precursors’ Proportioning. Construction and Building Materials, 322, Article 126472.
https://doi.org/10.1016/j.conbuildmat.2022.126472
[59]  Bidoung, J.C., Mpoung, L.A., Mbey, J.A. and Meva’a, J.R.L. (2023) Experimental and Numerical Study of Mechanical Behaviour of Fired Clay Bricks after Exposure to High Temperatures. Journal of Minerals and Materials Characterization and Engineering, 11, 143-160.
https://doi.org/10.4236/jmmce.2023.115012
[60]  Makomra, V., Tapsia, L.K., Ndiwe, B., Kaoutoing, M.D., Konai, N., Njom, A., et al. (2022) Physico-Mechanical Properties of Bio-Based Bricks. Journal of Materials Science and Chemical Engineering, 10, 16-29.
https://doi.org/10.4236/msce.2022.104002

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133