全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Improvement of Copper Recovery of Low-Grade Deposit Using Optimization of Flotation Process Parameters with Hydrofroth as a Frother

DOI: 10.4236/jmmce.2025.134012, PP. 196-216

Keywords: Copper Recovery, Flotation, Taguchi Orthogonal Array, ANOVA, Process Optimization, Low-Grade Deposit

Full-Text   Cite this paper   Add to My Lib

Abstract:

The study uses flotation process optimization to explore how to improve copper recovery from the Kakula deposit. Given the variability in ore grade, achieving high recovery rates and maintaining an optimal copper grade is critical. This research employs the Taguchi experimental design and multi-objective optimization to determine the most effective flotation parameters. Key factors investigated include solid mass percentage, air flow rate, particle size, frother dosage (HYDOFROTH), collector dosage (SIBX), and secondary collector dosage (AERO). The Taguchi method determined optimal conditions for maximum copper recovery at 96.4%, with 14.2% copper content in concentrate. The multi-objective approach provided a more balanced result: 95.4% copper recovery, 48.0% mass pull, 12.2% copper content. Comparing the results obtained by these two methods, it is noted that the multi-objective approach contributes more to the minimisation of silica, 24% versus 35.4%. ANOVA analysis revealed that collector dosage (SIBX) was the most significant factor influencing copper recovery. At the same time, solid mass percentage had the most significant impact on copper content, mass pull, and silica yield. The findings provide practical insights for improving the flotation performance of the Kakula deposit, ensuring higher efficiency and better concentrate quality.

References

[1]  Drzymata, J. (2014) Mineral Processing, Foundations of Theory and Practice of Minerallurgy. University of Technology.
[2]  Alsafasfeh, A. (2020) Modeling and Optimization of Froth Flotation of Low-Grade Phosphate Ores: Experiments and Machine Learning.
https://scholarsmine.mst.edu/doctoral_dissertations/2948
[3]  Rehman, B.U. (2019) Modelling and Mineral Froth Flotation. Sustainability (Switzerland), 11, 1-14.
http://scioteca.caf.com/bitstream/handle/123456789/1091/RED2017-Eng-8ene.pdf?sequence=12&isAllowed=y%0A
http://dx.doi.org/10.1016/j.regsciurbeco.2008.06.005%0A
https://www.researchgate.net/publication/305320484
[4]  Pérez-Garibay, R., Ramírez-Aguilera, N., Bouchard, J. and Rubio, J. (2014) Froth Flotation of Sphalerite: Collector Concentration, Gas Dispersion and Particle Size Effects. Minerals Engineering, 57, 72-78.
https://doi.org/10.1016/j.mineng.2013.12.020
[5]  Fuerstenau, M.C. and Han, K.N. (2003) Principles of Mineral Processing. Society for Mining, Metallurgy, and Exploration.
https://books.google.ca/books?id=MDiZQCSBENMC
[6]  Crozier, R.D. (1992) Flotation: Theory, Reagents and Ore Testing. In: Theory, Reagents and Ore Testing Series, Pergamon.
https://books.google.ca/books/about/Flotation.html?id=r0R-QgAACAAJ&redir_esc=y
[7]  Fuerstenau, M.C., Jameson, G.J. and Yoon, R.H. (2007) Froth Flotation: A Century of Innovation. Society for Mining, Metallurgy, and Exploration.
https://books.google.ca/books/about/Froth_Flotation.html?id=8zpjAhBViC0C&redir_esc=y
[8]  Sony, P., Tshibangu, O., et al. (2021) Comportement à la flottation du minerai oxydé cuprocobaltifère de Kimpe en RD Congo par sulfuration superficielle. International Journal of Innovation and Applied Studies, 31, 498-508.
[9]  Bhondayi, C. (2014) A Study of Flotation Froth Phase Behaviour. Doctor of Philosophy in Engineering Thesis, Wits University.
[10]  Kalenga, K.K.J. (2018) Valorisation des gisements de cuivre et cobalt par flottation. Éditions Universitaires Européennes.
[11]  Wills, B.A. and Finch, J. (2015) Wills’ Mineral Processing Technology: An Introduction to the Practical Aspects of Ore Treatment and Mineral Recovery. Butterworth-Heinemann.
https://books.google.ca/books?id=uMWcBAAAQBAJ
[12]  Temur, H. and Kocaker, M.M. (2009) Determination of the Optimum Conditions of the Dissolution of Chalcopyrite Concentrate in Aqueous Solutions Saturated with Chlorine.
[13]  Mines, I. (2016) Ivanhoe Mines Files NI 43-101 Technical Report for the Independent Pre-Feasibility Study for the First Phase of Mine Development at the Kamoa Copper Project in the Democratic Republic of Congo.
https://ivanhoemines.com/site/assets/files/2197/2016-03-30_nr.pdf
[14]  Semioshkina, N. and Voigt, G. (2006) An Overview on GSF Activities at the Semi-palatinsk Test Site, Kazakhstan. Journal of Radiation Research, 47, A95-A100.
https://doi.org/10.1269/jrr.47.a95
[15]  Roy, R.K. (2010) A Primer on the Taguchi Method. 2nd Edition, Society of Manufacturing Engineers.
https://books.google.ca/books/about/A_Primer_on_the_Taguchi_Method_Second_Ed.html?id=k5VBsRZfzQsC&redir_esc=y
[16]  Ghani, J.A., Choudhury, I.A. and Hassan, H.H. (2004) Application of Taguchi Method in the Optimization of End Milling Parameters. Journal of Materials Processing Technology, 145, 84-92.
https://doi.org/10.1016/s0924-0136(03)00865-3
[17]  Bozkurt, Y. and Bilici, M.K. (2013) Application of Taguchi Approach to Optimize of FSSW Parameters on Joint Properties of Dissimilar AA2024-T3 and AA5754-H22 Aluminum Alloys. Materials & Design, 51, 513-521.
https://doi.org/10.1016/j.matdes.2013.04.074
[18]  Athreya, S. and Venkatesh, Y.D. (2012) Application of Taguchi Method for Optimization of Process Parameters in Improving the Surface Roughness of Lathe Facing Operation. International Refereed Journal of Engineering and Science, 1, 13-19.
[19]  Dehnad, K. (1989) Quality Control, Robust Design, and the Taguchi Method. Wads-worth & Brooks/Cole Advanced Books & Software.
https://ulaval.on.worldcat.org/oclc/1131371872
[20]  Taguchi, G. (1993) Taguchi on Robust Technology Development: Bringing Quality Engineering Upstream. American Society of Mechanical Engineers.
https://ulaval.on.worldcat.org/oclc/872149500
[21]  Shengo, M.L., Kime, M.-P., Mambwe, M.P. and Nyembo, T.K. (2019) A Review of the Beneficiation of Copper-Cobalt-Bearing Minerals in the Democratic Republic of Congo. Journal of Sustainable Mining, 18, 226-246.
https://doi.org/10.1016/j.jsm.2019.08.001
[22]  Masiya, T.T. and Nheta, W. (2014) Flotation of Nickel-Copper Sulphide Ore: Optimisation of Process Parameters Using Taguchi Method. Proceedings of the International Conference on Mining, Material and Metallurgical Engineering, Prague, 11-12 August 2014, 1-11.
[23]  Bilal, M., Park, I., Hornn, V., Ito, M., Hassan, F., Jeon, S., et al. (2022) The Challenges and Prospects of Recovering Fine Copper Sulfides from Tailings Using Different Flotation Techniques: A Review. Minerals, 12, Article 586.
https://doi.org/10.3390/min12050586
[24]  Bulatovic, S.M. (2007) Flotation of Copper Sulfide Ores. In: Handbook of Flotation Reagents, Elsevier, 235-293.
https://doi.org/10.1016/b978-044453029-5/50021-6
[25]  Luo, Y., Ou, L., Sun, W., Han, H., Chen, J. and Peng, J. (2023) A Case Study of Flotation of Chalcopyrite-Molybdenite Ore Using a Mixture of Pyrogallic Acid and O-Isopropyl Ethylthiocarbamate: Insights from Ab Initio Calculations. Advanced Powder Technology, 34, Article 104039.
https://doi.org/10.1016/j.apt.2023.104039
[26]  Ramarao, M., King, M.F.L., Sivakumar, A., Manikandan, V., Vijayakumar, M. and Subbiah, R. (2022) Optimizing GMAW Parameters to Achieve High Impact Strength of the Dissimilar Weld Joints Using Taguchi Approach. Materials Today: Proceedings, 50, 861-866.
https://doi.org/10.1016/j.matpr.2021.06.137

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133