全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Diels-Alder反应研究进展
Research Progress in Diels-Alder Reaction

DOI: 10.12677/amc.2025.133035, PP. 326-338

Keywords: Diels-Alder反应,金属催化,有机催化,手性催化
Diels-Alder Reaction
, Metal Catalysis, Organic Catalysis, Chiral Catalysis

Full-Text   Cite this paper   Add to My Lib

Abstract:

Diels-Alder反应作为有机化学中构建六元环骨架的经典反应,因其高效的成环特性与广泛的底物适用性,在医药合成、功能材料开发及生物大分子修饰等领域具有不可替代的重要地位。近年来,随着催化技术的持续革新,该反应在催化体系设计、立体选择性调控及绿色合成路径开发等方向取得了突破性进展。本文以催化体系为核心脉络,系统综述近年来金属催化、有机催化及手性催化Diels-Alder反应的研究成果,为拓展其在复杂分子合成、新型材料制备等前沿领域的应用提供参考。
The Diels-Alder reaction, as a classic method for constructing six-membered ring frameworks in organic chemistry, holds an irreplaceable and important position in fields such as pharmaceutical synthesis, functional materials development, and biomolecule modification due to its efficient ring-forming characteristics and broad substrate applicability. In recent years, with the continuous innovation of catalytic technologies, this reaction has made groundbreaking progress in areas such as catalytic system design, stereoselectivity regulation, and the development of green synthesis pathways. This article focuses on catalytic systems and systematically reviews the latest research achievements in metal-catalyzed, organic-catalyzed, and chiral-catalyzed Diels-Alder reactions in recent years, aiming to provide strategic references for expanding its applications in cutting-edge fields such as complex molecule synthesis and novel material preparation.

References

[1]  Alcaide, B. and Almendros, P. (2011) Novel Cyclization Reactions of Aminoallenes. Advanced Synthesis & Catalysis, 353, 2561-2576.
https://doi.org/10.1002/adsc.201100160
[2]  Harvey, D.F. and Sigano, D.M. (1996) Carbene-Alkyne-Alkene Cyclization Reactions. Chemical Reviews, 96, 271-288.
https://doi.org/10.1021/cr950010w
[3]  Zhang, M., Zhong, Z., Liao, L. and Zhang, A.Q. (2022) Application of a Transient Directing Strategy in Cyclization Reactions via c-h Activation. Organic Chemistry Frontiers, 9, 3882-3896.
https://doi.org/10.1039/d2qo00765g
[4]  Zhang, T., Zhang, Y. and Das, S. (2020) Deal; Photoredox Catalysis for the Cycloaddition Reactions. ChemCatChem, 12, 6173-6185.
https://doi.org/10.1002/cctc.202001195
[5]  Min, L., Hu, Y., Fan, J., Zhang, W. and Li, C. (2020) Synthetic Applications of Type II Intramolecular Cycloadditions. Chemical Society Reviews, 49, 7015-7043.
https://doi.org/10.1039/d0cs00365d
[6]  Maji, B. (2019) Stereoselective Haliranium, Thiiranium and Seleniranium Ion‐Triggered Friedel-Crafts‐Type Alkylations for Polyene Cyclizations. Advanced Synthesis & Catalysis, 361, 3453-3489.
https://doi.org/10.1002/adsc.201900028
[7]  Duret, G., Le Fouler, V., Bisseret, P., Bizet, V. and Blanchard, N. (2017) Diels-Alder and Formal Diels-Alder Cycloaddition Reactions of Ynamines and Ynamides. European Journal of Organic Chemistry, 2017, 6816-6830.
https://doi.org/10.1002/ejoc.201700986
[8]  Kalník, M., Gabko, P., Bella, M. and Koóš, M. (2021) The Bucherer-Bergs Multicomponent Synthesis of Hydantoins—Excellence in Simplicity. Molecules, 26, Article No. 4024.
https://doi.org/10.3390/molecules26134024
[9]  Frontier, A.J. and Hernandez, J.J. (2020) New Twists in Nazarov Cyclization Chemistry. Accounts of Chemical Research, 53, 1822-1832.
https://doi.org/10.1021/acs.accounts.0c00284
[10]  Pulka, K. (2010). Pictet-Spengler Reactions for the Synthesis of Pharmaceutically Relevant Heterocycles. Current Opinion in Drug Discovery & Development, 13, 669-684.
[11]  Heravi, M.M., Rohani, S., Zadsirjan, V. and Zahedi, N. (2017) Fischer Indole Synthesis Applied to the Total Synthesis of Natural Products. RSC Advances, 7, 52852-52887.
https://doi.org/10.1039/c7ra10716a
[12]  Diels, O. and Alder, K. (1928) Synthesen in der hydroaromatischen Reihe. Justus Liebigs Annalen der Chemie, 460, 98-122.
https://doi.org/10.1002/jlac.19284600106
[13]  Chauhan, A.N.S., Mali, G. and Erande, R.D. (2022) Regioselectivity Switch towards the Development of Innovative Diels‐Alder Cycloaddition and Productive Applications in Organic Synthesis. Asian Journal of Organic Chemistry, 11, e202100793.
https://doi.org/10.1002/ajoc.202100793
[14]  Houk, K.N., Liu, F., Yang, Z. and Seeman, J.I. (2021) Evolution of the Diels-Alder Reaction Mechanism since the 1930s: Woodward, Houk with Woodward, and the Influence of Computational Chemistry on Understanding Cycloadditions. Angewandte Chemie International Edition, 60, 12660-12681.
https://doi.org/10.1002/anie.202001654
[15]  Wessig, P. and Müller, G. (2008) The Dehydro-Diels-Alder Reaction. Chemical Reviews, 108, 2051-2063.
https://doi.org/10.1021/cr0783986
[16]  Fernández, I. and Bickelhaupt, F.M. (2016) Deeper Insight into the Diels-Alder Reaction through the Activation Strain Model. ChemistryAn Asian Journal, 11, 3297-3304.
https://doi.org/10.1002/asia.201601203
[17]  Nicolaou, K.C., Snyder, S.A., Montagnon, T. and Vassilikogiannakis, G. (2002) The Diels-Alder Reaction in Total Synthesis. Angewandte Chemie International Edition, 41, 1668-1698.
https://doi.org/10.1002/1521-3773(20020517)41:10<1668::aid-anie1668>3.0.co;2-z
[18]  Oliveira, B.L., Guo, Z. and Bernardes, G.J.L. (2017) Inverse Electron Demand Diels-Alder Reactions in Chemical Biology. Chemical Society Reviews, 46, 4895-4950.
https://doi.org/10.1039/c7cs00184c
[19]  Heravi, M.M., Ahmadi, T., Ghavidel, M., Heidari, B. and Hamidi, H. (2015) Recent Applications of the Hetero Diels-alder Reaction in the Total Synthesis of Natural Products. RSC Advances, 5, 101999-102075.
https://doi.org/10.1039/c5ra17488k
[20]  Fringuelli, F., Piermatti, O., Pizzo, F. and Vaccaro, L. (2001) Recent Advances in Lewis Acid Catalyzed Diels-Alder Reactions in Aqueous Media. European Journal of Organic Chemistry, 2001, 439-455.
https://doi.org/10.1002/1099-0690(200102)2001:3<439::aid-ejoc439>3.0.co;2-b
[21]  Reymond, S. and Cossy, J. (2008) Copper-Catalyzed Diels-Alder Reactions. Chemical Reviews, 108, 5359-5406.
https://doi.org/10.1021/cr078346g
[22]  Heravi, M.M. and Vavsari, V.F. (2015) Recent Applications of Intramolecular Diels-Alder Reaction in Total Synthesis of Natural Products. RSC Advances, 5, 50890-50912.
https://doi.org/10.1039/c5ra08306k
[23]  Moschona, F., Savvopoulou, I., Tsitopoulou, M., Tataraki, D. and Rassias, G. (2020) Epoxide Syntheses and Ring-Opening Reactions in Drug Development. Catalysts, 10, Article No. 1117.
https://doi.org/10.3390/catal10101117
[24]  Juhl, M. and Tanner, D. (2009) Recent Applications of Intramolecular Diels-Alder Reactions to Natural Product Synthesis. Chemical Society Reviews, 38, 2983-2992.
https://doi.org/10.1039/b816703f
[25]  Luo, N., Wang, S., Zhang, Y., Xin, J. and Wang, C. (2020) Dbu-Promoted Cascade Selective Nucleophilic Addition/c-c Bond Cleavage/Hetero-Diels-Alder Reactions of 2-Amino-4h-Chromen-4-Ones with Β-Nitrostyrenes and/or Aryl Aldehydes: Access to 5h-chromeno[2,3-b]pyridin-5-ones. The Journal of Organic Chemistry, 85, 14219-14228.
https://doi.org/10.1021/acs.joc.0c01993
[26]  Beeck, S. and Wegner, H.A. (2022) Mechanistic Studies on the Bidentate Lewis Acid Catalyzed Domino Inverse Electron‐Demand Diels‐Alder/Thiol Transfer Reaction. European Journal of Organic Chemistry, 26, e202201289.
https://doi.org/10.1002/ejoc.202201289
[27]  Shen, L., Zhang, Y., You, Y., Zhao, J., Wang, Z. and Yuan, W. (2022) Inverse Electron-Demand Aza-Diels-Alder Reaction of Α,β-Unsaturated Thioesters with in Situ-Generated 1,2-Diaza-1,3-Dienes for the Synthesis of 1,3,4-Thiadiazines. The Journal of Organic Chemistry, 87, 4232-4240.
https://doi.org/10.1021/acs.joc.1c03072
[28]  Li, X., Kong, X., Yang, S., Meng, M., Zhan, X., Zeng, M., et al. (2019) Bifunctional Thiourea-Catalyzed Asymmetric Inverse-Electron-Demand Diels-alder Reaction of Allyl Ketones and Vinyl 1,2-Diketones via Dienolate Intermediate. Organic Letters, 21, 1979-1983.
https://doi.org/10.1021/acs.orglett.9b00035
[29]  Qin, J., Zhang, Y., Liu, C., Zhou, J., Zhan, R., Chen, W., et al. (2019) Asymmetric Inverse-Electron-Demand Diels-Alder Reaction of Β,γ-Unsaturated Amides through Dienolate Catalysis. Organic Letters, 21, 7337-7341.
https://doi.org/10.1021/acs.orglett.9b02629
[30]  Chithanna, S. and Yang, D. (2022) Intramolecular Diels-Alder Cycloaddition of Furan-Derived Β-Enamino Diketones: An Entry to Diastereoselective Synthesis of Polycyclic Pyrano[3,2-c]quinolin-5-One Derivatives. The Journal of Organic Chemistry, 87, 5178-5187.
https://doi.org/10.1021/acs.joc.1c03163
[31]  Wang, Z., Yamazaki, S., Mikata, Y., Oba, M., Takashima, H., Morimoto, T., et al. (2022) Intramolecular Diels-Alder Reactions of Α-Bromostyrene-Functionalized Unsaturated Carboxamides. The Journal of Organic Chemistry, 87, 11148-11164.
https://doi.org/10.1021/acs.joc.2c01417
[32]  Yuan, C., Wang, J., Wang, G., Sun, S. and Wang, J. (2023) Assembly of Dihydropyridazines via [4+2] Cycloaddition of in Situ Generated Azoalkenes. Asian Journal of Organic Chemistry, 12, e202200671.
https://doi.org/10.1002/ajoc.202200671
[33]  Pan, L., Wang, Q., Sun, J. and Yan, C. (2021) Intramolecular Diels‐Alder Reaction of Styrene with Phenoxy‐Acrylate for Construction of Functionalized Naphthalenes. Asian Journal of Organic Chemistry, 10, 2591-2595.
https://doi.org/10.1002/ajoc.202100401
[34]  Miao, Y., Hua, Y., Gao, H., Mo, N., Wang, M. and Mei, G. (2022) Catalytic Asymmetric Inverse-Electron-Demand Aza-Diels-Alder Reaction of 1,3-Diazadienes with 3-Vinylindoles. Chemical Communications, 58, 7515-7518.
https://doi.org/10.1039/d2cc02458f
[35]  Koay, W.L., Mei, G. and Lu, Y. (2021) Facile Access to Benzofuran-Fused Tetrahydropyridines via Catalytic Asymmetric [4 + 2] Cycloaddition of Aurone-Derived 1-Azadienes with 3-Vinylindoles. Organic Chemistry Frontiers, 8, 968-974.
https://doi.org/10.1039/d0qo01236j
[36]  Mendoza, S.D., Rombola, M., Tao, Y., Zuend, S.J., Götz, R., McLaughlin, M.J., et al. (2022) Expanding the Chiral Monoterpene Pool: Enantioselective Diels-Alder Reactions of Α-Acyloxy Enones. Organic Letters, 24, 3802-3806.
https://doi.org/10.1021/acs.orglett.2c01343
[37]  Ngamnithiporn, A., Chuentragool, P., Ploypradith, P. and Ruchirawat, S. (2022) Syntheses of 3-Aryl Tetrahydroisoquinolines via an Intermolecular [4 + 2] Cycloaddition of Sultines with Imines. Organic Letters, 24, 4192-4196.
https://doi.org/10.1021/acs.orglett.2c01437
[38]  Yang, X., Zhao, X., Ouyang, Q., Du, W. and Chen, Y. (2022) Palladium-Catalysed Diastereodivergent Inverse-Electron-Demand Oxa-Diels-Alder Reactions of in Situ Formed Cyclopentadienones via Ligand-Control. Organic Chemistry Frontiers, 9, 1364-1369.
https://doi.org/10.1039/d1qo01876k
[39]  Shcherbakov, N.V., Dar’in, D.V., Kukushkin, V.Y. and Dubovtsev, A.Y. (2021) Hetero-Tetradehydro-Diels-Alder Cycloaddition of Enynamides and Cyanamides: Gold-Catalyzed Generation of Diversely Substituted 2,6-Diaminopyridines. The Journal of Organic Chemistry, 86, 7218-7228.
https://doi.org/10.1021/acs.joc.1c00558
[40]  Stefaniak, M., Buda, S. and Mlynarski, J. (2020) Asymmetric Hetero‐Diels-Alder Reaction of trans‐1‐Methoxy‐3‐trimethylsilyloxy‐buta‐1,3‐diene Catalyzed by Zinc Complexes. European Journal of Organic Chemistry, 2020, 5388-5393.
https://doi.org/10.1002/ejoc.202000822
[41]  Giofrè, S., Keller, M., Lo Presti, L., Beccalli, E.M. and Molteni, L. (2021) Switchable Oxidative Reactions of n-Allyl-2-Aminophenols: Palladium-Catalyzed Alkoxyacyloxylation vs an Intramolecular Diels-Alder Reaction. Organic Letters, 23, 7698-7702.
https://doi.org/10.1021/acs.orglett.1c02539
[42]  Masuda, K., Agalave, S.G., Chen, W., Onozawa, S., Shimada, S., Sato, K., et al. (2022) Continuous-Flow Diels-Alder Reactions of Unactivated Dienes over Zeolitic Catalysts. Asian Journal of Organic Chemistry, 12, e202200382.
https://doi.org/10.1002/ajoc.202200382
[43]  Kamo, S., Kurosawa, H., Matsuzawa, A. and Sugita, K. (2022) Total Synthesis of (−)-Lamellodysidine a via an Intramolecular Diels-Alder Reaction. Organic Letters, 24, 921-923.
https://doi.org/10.1021/acs.orglett.1c04289

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133