全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

半折叠n-立方体图的度量维数的上界
An Upper Bound on the Metric Dimension of the Halved Folded n-Cube

DOI: 10.12677/pm.2025.157206, PP. 53-60

Keywords: 度量维数,半折叠n-立方体图,距离正则图
Metric Dimension
, Halved Folded n-Cube, Distance-Regular Graph

Full-Text   Cite this paper   Add to My Lib

Abstract:

令图 G 是简单的无向连通图,图 G=( X,R ) 的解析集 SX 是指对于任意两个不同点 u,vX ,总存在 s i S 使得 ( u, s i )( v, s i ) 。图 G 的度量维数是所有解析集基数的最小值。本文针对直径 d3 的半折叠n-立方体图,在 n=4d+2 时构造了一个解析集,从而证明了 3 8 n 2 5 4 n 是该图度量维数的上界。最后,将所得上界与Babai的上界进行对比,发现所得上界在一定情况下更优。
Let G be a simple, undirected, connected graph. A resolving set SX for graph G=( X,R ) satisfies for any two vertices

References

[1]  Slater P.J. (1975) Leaves of Trees. Congressus Numerantium, 14, 549-559.
[2]  Khuller, S., Raghavachari, B. and Rosenfeld, A. (1996) Landmarks in Graphs. Discrete Applied Mathematics, 70, 217-229.
https://doi.org/10.1016/0166-218x(95)00106-2
[3]  Babai, L. (1980) On the Complexity of Canonical Labeling of Strongly Regular Graphs. SIAM Journal on Computing, 9, 212-216.
https://doi.org/10.1137/0209018
[4]  Babai, L. (1981) On the Order of Uniprimitive Permutation Groups. The Annals of Mathematics, 113, 553-568.
https://doi.org/10.2307/2006997
[5]  Chvátal, V. (1983) Mastermind. Combinatorica, 3, 325-329.
https://doi.org/10.1007/bf02579188
[6]  Cáceres, J., Hernando, C., Mora, M., Pelayo, I.M., Puertas, M.L., Seara, C., et al. (2007) On the Metric Dimension of Cartesian Products of Graphs. SIAM Journal on Discrete Mathematics, 21, 423-441.
https://doi.org/10.1137/050641867
[7]  Bailey, R.F. and Meagher, K. (2012) On the Metric Dimension of Grassmann Graphs. Discrete Mathematics & Theoretical Computer Science, 13, 97-104.
https://doi.org/10.46298/dmtcs.532
[8]  Bailey, R.F. and Cameron, P.J. (2011) Base Size, Metric Dimension and Other Invariants of Groups and Graphs. Bulletin of the London Mathematical Society, 43, 209-242.
https://doi.org/10.1112/blms/bdq096
[9]  Bailey, R.F., Cáceres, J., Garijo, D., González, A., Márquez, A., Meagher, K., et al. (2013) Resolving Sets for Johnson and Kneser Graphs. European Journal of Combinatorics, 34, 736-751.
https://doi.org/10.1016/j.ejc.2012.10.008
[10]  Feng, M. and Wang, K. (2012) On the Metric Dimension of Bilinear Forms Graphs. Discrete Mathematics, 312, 1266-1268.
https://doi.org/10.1016/j.disc.2011.11.020
[11]  Guo, J., Wang, K. and Li, F. (2012) Metric Dimension of Some Distance-Regular Graphs. Journal of Combinatorial Optimization, 26, 190-197.
https://doi.org/10.1007/s10878-012-9459-x
[12]  Guo, J., Wang, K. and Li, F. (2013) Metric Dimension of Symplectic Dual Polar Graphs and Symmetric Bilinear Forms Graphs. Discrete Mathematics, 313, 186-188.
https://doi.org/10.1016/j.disc.2012.09.023
[13]  Lindström, B. (1964) On a Combinatory Detection Problem. A Magyar Tudományos Akadémia. Matematikai Kutató Intézetének Közleményei, 9, 195-207.
[14]  Hertz, A. (2017) An Ip-Based Swapping Algorithm for the Metric Dimension and Minimal Doubly Resolving Set Problems in Hypercubes. Optimization Letters, 14, 355-367.
https://doi.org/10.1007/s11590-017-1184-z
[15]  Zhang, Y., Hou, L., Hou, B., Wu, W., Du, D. and Gao, S. (2019) On the Metric Dimension of the Folded N-Cube. Optimization Letters, 14, 249-257.
https://doi.org/10.1007/s11590-019-01476-z
[16]  Kelenc, A., Masa Toshi, A.T., Škrekovski, R. and Yero, I.G. (2022) On Metric Dimensions of Hypercubes. Ars Mathematica Contemporanea, 23, #P2.08.
https://doi.org/10.26493/1855-3974.2568.55c
[17]  田毅, 王魏, 任子涵, 等. 一类半折叠n-立方体图的度量维数[J]. 应用数学进展, 2025, 14(7): 54-58.
[18]  Simó, E. and Yebra, J.L.A. (1997) The Vulnerability of the Diameter of Folded N-Cubes. Discrete Mathematics, 174, 317-322.
https://doi.org/10.1016/s0012-365x(97)80334-2
[19]  Chartrand, G., Eroh, L., Johnson, M.A. and Oellermann, O.R. (2000) Resolvability in Graphs and the Metric Dimension of a Graph. Discrete Applied Mathematics, 105, 99-113.
https://doi.org/10.1016/s0166-218x(00)00198-0
[20]  Bailey, R.F. (2015) The Metric Dimension of Small Distance-Regular and Strongly Regular Graphs. The Australasian Journal of Combinatorics, 62, 18-34.
[21]  Brouwer, A.E., Cohen, A.M. and Neumaier, A. (1989) Distance-Regular Graphs. Springer-Verlag.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133