Diénéméra-Gongondy copper-gold deposit is one of the rare Paleoproterozoic porphyry copper deposit of West African Craton. Like most of the Precambrian porphyry copper deposits, the mineralization of Diénéméra-Gongondy copper-gold deposit still remains controversial. In this study, we used thirteen drill cores of “Projet Minier Gaoua” to characterize the petrographic, geochemical signature and ore mineralogy. However, δ34S isotopic analyses has been also conducted on these samples in order to determine the source of fluids associated to the Diénéméra-Gongondy copper-gold deposit. Macroscopic and microscopic observations revealed a complex lithology encompassing a wide range of subvolcanic to volcano-plutonic rocks variable in mineralogy and texture, dominated by several facies of microdiorites which host the mineralization. This mineralization is affected by several phases of hydrothermal alteration dominated at Diénéméra by propylitization. However, at Gongondy, phyllitic-carbonate alteration type is dominant. The geochemical study of alteration minerals confirmed the presence of these alterations, but the potassic alteration is absent, probably destroy by late alteration events or retrograde metamorphism. The δ34S isotopic analyses on pyrite form four samples of pyrite and chalcopyrite of Diénéméra and Gongondy deposits showed that the δ34S values range from ?4.1 to 4.7. These values are in accordance with a magmatic origin of the sulfide, with a probable little contribution of late hydrothermal or meteoritic fluids. The (Cs + Rb)/Th normalized diagram confirms the potential mineralization of Diénéméra and Gongondy deposits, whereas the excess Aluminum diagram is confident for a porphyry type of mineralization. In definitive, all the results show that the Diénéméra-Gongondy copper-gold deposit is a porphyry type of birimian age affected by late stage magmatic, structural and hydrothermal events.
Dilles, J.H. and John, D.A. (2021) Porphyry and Epithermal Mineral Deposits. In: Alderton, D. and Elias, S.A., Eds., EncyclopediaofGeology, Elsevier, 847-866. https://doi.org/10.1016/b978-0-08-102908-4.00005-9
[3]
Chiaradia, M. (2013) Copper Enrichment in Arc Magmas Controlled by Overriding Plate Thickness. NatureGeoscience, 7, 43-46. https://doi.org/10.1038/ngeo2028
[4]
Lee, C.A. and Tang, M. (2020) How to Make Porphyry Copper Deposits. EarthandPlanetaryScienceLetters, 529, Article ID: 115868. https://doi.org/10.1016/j.epsl.2019.115868
[5]
Chen, H. and Wu, C. (2020) Metallogenesis and Major Challenges of Porphyry Copper Systems above Subduction Zones. ScienceChinaEarthSciences, 63, 899-918. https://doi.org/10.1007/s11430-019-9595-8
Richards, J.P. (2005) Cumulative Factors in the Generation of Giant Calc-Alkaline Porphyry Cu Deposits. In: Porter, T.M., Ed., Super Porphyry Copper & Gold Deposits: A Global Perspective, PGC Publishing, Vol. 1, 7-25.
[8]
Richards, J.P. (2011) High Sr/Y ARC Magmas and Porphyry Cu Mo Au Deposits: Just Add Water. EconomicGeology, 106, 1075-1081. https://doi.org/10.2113/econgeo.106.7.1075
[9]
Vigneresse, J., Truche, L. and Chattaraj, P.K. (2014) Metal (Copper) Segregation in Magmas. Lithos, 208, 462-470. https://doi.org/10.1016/j.lithos.2014.09.025
[10]
Sun, W., Huang, R., Li, H., Hu, Y., Zhang, C., Sun, S., et al. (2015) Porphyry Deposits and Oxidized Magmas. OreGeologyReviews, 65, 97-131. https://doi.org/10.1016/j.oregeorev.2014.09.004
[11]
Sun, W., Wang, J., Zhang, L., Zhang, C., Li, H., Ling, M., et al. (2016) The Formation of Porphyry Copper Deposits. ActaGeochimica, 36, 9-15. https://doi.org/10.1007/s11631-016-0132-4
[12]
Liu, H., Liao, R., Zhang, L., Li, C. and Sun, W. (2019) Plate Subduction, Oxygen Fugacity, and Mineralization. JournalofOceanologyandLimnology, 38, 64-74. https://doi.org/10.1007/s00343-019-8339-y
[13]
Goldfarb, R.J., André-Mayer, A., Jowitt, S.M. and Mudd, G.M. (2017) West Africa: The World’s Premier Paleoproterozoic Gold Province. EconomicGeology, 112, 123-143. https://doi.org/10.2113/econgeo.112.1.123
[14]
Kolb, J. and Petrov, N. (2016) The Guelb Moghrein Cu-Au Deposit: Neoarchaean Hydrothermal Sulfide Mineralization in Carbonate-Facies Iron Formation. Ore GeologyReviews, 78, 573-577. https://doi.org/10.1016/j.oregeorev.2015.09.003
[15]
Schwartz, M.O. and Melcher, F. (2003) The Perkoa Zinc Deposit, Burkina Faso. EconomicGeology, 98, 1463-1485. https://doi.org/10.2113/gsecongeo.98.7.1463
[16]
Béziat, D., Siebenaller, L., Salvi, S. and Chevalier, P. (2016) A Weathered Skarn-Type Mineralization in Ivory Coast: The Ity Gold Deposit. OreGeologyReviews, 78, 724-730. https://doi.org/10.1016/j.oregeorev.2015.07.011
[17]
Masurel, Q., Thébaud, N., Miller, J., Ulrich, S., Hein, K.A.A., Cameron, G., et al. (2017) Sadiola Hill: A World-Class Carbonate-Hosted Gold Deposit in Mali, West Africa. EconomicGeology, 112, 23-47. https://doi.org/10.2113/econgeo.112.1.23
[18]
McFarlane, C.R.M., Mavrogenes, J., Lentz, D., King, K., Allibone, A. and Holcombe, R. (2011) Geology and Intrusion-Related Affinity of the Morila Gold Mine, Southeast Mali. EconomicGeology, 106, 727-750. https://doi.org/10.2113/econgeo.106.5.727
[19]
Ilboudo, H., Sawadogo, S., Traoré, A.S., Sama, M., Wenmenga, U. and Lompo, M. (2018) Intrusion-Related Gold Mineralization: Inata Gold Deposit, Bélahourou District, Northern Burkina Faso (West-Africa). JournalofAfricanEarthSciences, 148, 52-58. https://doi.org/10.1016/j.jafrearsci.2018.05.015
[20]
Masurel, Q., Thébaud, N., Allibone, A., André-Mayer, A., Hein, K.A.A., Reisberg, L., et al. (2019) Intrusion-Related Affinity and Orogenic Gold Overprint at the Paleopro-terozoic Bonikro Au-(Mo) Deposit (Côte d’ivoire, West African Craton). MineraliumDeposita, 57, 557-580. https://doi.org/10.1007/s00126-019-00888-2
[21]
Gossens, P.J. (1970) Guide sur la recherche de gisements de Cu/Mo disséminés-type «porphyry copper» en Haute-Volta. PNUD.
[22]
Sillitoe, R.H. (1973) An Examination of Porphyry Copper-Molybdenum Prospects and the Overall Metallogeny of the Birrimian System in Upper Volta and Niger, West Africa.
[23]
Sillitoe, R.H. (2007) An Appraisal of the Dienemera and Gongondy Copper-Gold Prospects, Gaoua District, Burkina Faso. Wentworth Resources Pty Ltd., 16 p.
[24]
Sillitoe, R.H. (2008) Geological Modelling of Dienemera and Gongondy Breccia-hosted Copper-Gold Prospects, Gaoua District, Burkina Faso. Wentworth Resources Pty Ltd., 11 p.
[25]
Gamsonré, P.E. (1970) Etude pétrologique et métallogénique de la région de Gongondy, Diénéméra et Malba. Thèse de 3e cycle, Univ. Besançon, Fr., 249 p.
[26]
Sougue, P. (1985) Rapport technique détaillé sur les sondages carottés dans le secteur de Diénéméra Nord. PMG.
[27]
Naré, A. (2011) Métallogénie du cuivre-or de Gaoua, Sud-Ouest du Burkina Faso, Afrique de l’Ouest. Master Prof., Université de Toulouse, 56 p.
[28]
Mignot, E.L., Siebenaller, L., Béziat, D., Salvi, S., Andrémayer, A., Reisberg, L., et al. (2014) The Paleoproterozoic Copper‐Gold Deposit of Gaoua, Burkina Faso: Evidence for a Polyphased Mineralization. ActaGeologicaSinica—EnglishEdition, 88, 970-972. https://doi.org/10.1111/1755-6724.12378_5
[29]
Le Mignot, E., Siebenaller, L., Béziat, D., André-Mayer, A., Reisberg, L., Salvi, S., et al. (2017) The Paleoproterozoic Copper-Gold Deposits of the Gaoua District, Burkina Faso: Superposition of Orogenic Gold on a Porphyry Copper Occurrence? EconomicGeology, 112, 99-122. https://doi.org/10.2113/econgeo.112.1.99
[30]
Baratoux, L., Metelka, V., Naba, S., Ouiya, P., Siebenaller, L., Jessell, M.W., et al. (2015) Tectonic Evolution of the Gaoua Region, Burkina Faso: Implications for Mineralization. JournalofAfricanEarthSciences, 112, 419-439. https://doi.org/10.1016/j.jafrearsci.2015.10.004
[31]
Siebenaller, L., Béziat, D., Salvi, S., Naba, S., Le Mignot, E., Baratoux, L., et al. (2015) WITHDRAWN: The Gaoua Porphyry Cu-Au Deposit, SW Burkina Faso. Ore GeologyReviews. https://doi.org/10.1016/j.oregeorev.2015.10.031
[32]
André-Mayer, A.-S., Cathelineau, M., Muchez, P., Pirard, E. and Sindern, S. (2015) Mineral Resources in a Sustainable World. Proceedings of the 13th Biennial SGA Meeting, Nancy, 24-27 August 2015, 2134 p.
[33]
Hallarou, M.M., Konaté, M., Olatunji, A.S., Ahmed, Y., Ajayi, F.F. and Abdul, R.M. (2020) Re-Os Ages for the Kourki Porphyry Cu-Mo Deposits, North West Niger (West Africa): Geodynamic Implications. European Journal of Environment and EarthSciences, 1, 1-13. https://doi.org/10.24018/ejgeo.2020.1.4.43
[34]
SRK Consulting Ltd. (2013) Technical Report on a Mineral Resource Estimation for the Gaoua Project, Burkina Faso. 150 p.
[35]
PNUD (1970) Enquête sur les ressources minières et les ressources en eaux souterraines en Haute Volta.
[36]
Kahou, Z.S., Duchêne, S., Brichau, S., Campos, E., Estrade, G., Poujol, M., et al. (2021) Mineralogical and Chemical Characterization of Supergene Copper-Bearing Minerals: Examples from Chile and Burkina Faso. Ore Geology Reviews, 133, Article ID: 104078. https://doi.org/10.1016/j.oregeorev.2021.104078
[37]
Kouamelan, A.N., Delor, C. and Peucat, J. (1997) Geochronological Evidence for Reworking of Archean Terrains during the Early Proterozoic (2.1 Ga) in the Western Coˆte D’ivoire (Man Rise-West African Craton). PrecambrianResearch, 86, 177-199. https://doi.org/10.1016/s0301-9268(97)00043-0
[38]
Boher, M., Abouchami, W., Michard, A., Albarede, F. and Arndt, N.T. (1992) Crustal Growth in West Africa at 2.1 Ga. JournalofGeophysicalResearch: SolidEarth, 97, 345-369. https://doi.org/10.1029/91jb01640
[39]
Baratoux, L., Metelka, V., Naba, S., Jessell, M.W., Grégoire, M. and Ganne, J. (2011) Juvenile Paleoproterozoic Crust Evolution during the Eburnean Orogeny (∼2.2-2.0 Ga), Western Burkina Faso. PrecambrianResearch, 191, 18-45. https://doi.org/10.1016/j.precamres.2011.08.010
[40]
Metelka, V., Baratoux, L., Naba, S. and Jessell, M.W. (2011) A Geophysically Constrained Litho-Structural Analysis of the Eburnean Greenstone Belts and Associated Granitoid Domains, Burkina Faso, West Africa. PrecambrianResearch, 190, 48-69. https://doi.org/10.1016/j.precamres.2011.08.002
[41]
Van De Steen, J. and Sattran, V. (1982) Recherches géologiques et minières dans les sillons de Houndé et de Boromo. Rapport final technique de synthèse. PNUD projet UPV 74-004, 124 p.
[42]
Naba, S. (2010) Rapport final d’une étude pétrostructurale de la zone exclue dans le permis de Gaoua Minerals à l’est de Gaoua. Volta Resources, 64 p.
[43]
Belemsobgo, A., Zongo, W.P.P., Wenmenga, U. and Naba, S. (2024) Fertilité des intrusions dans les porphyres cuprifères paléoprotérozoïques de la ceinture de roches vertes birimienne de Boromo, Burkina Faso, Craton Ouest Africain. Afrique Science, 24, 60-74.
[44]
Brownscombe, W. (2009) The Tinga Anomaly: A New Style of Gold Mineralization in Ghana? University of Oxford, 80 p.
[45]
Ishikawa, Y., Sawguchi, T., Iwaya, S. and Horiuchi, M. (1976) Delineation of Prospective Targets for Kuroko Deposits Based on Modes of Volcanism of Underlying Dacite and Alteration Halos. Mining Geology, 26, 105-117.
[46]
Large, R.R. (2001) The Alteration Box Plot: A Simple Approach to Understanding the Relationship between Alteration Mineralogy and Lithogeochemistry Associated with Volcanic-Hosted Massive Sulfide Deposits. EconomicGeology, 96, 957-971. https://doi.org/10.2113/96.5.957
[47]
Heath, C.J. and Campbell, I.H. (2004) A New Geochemical Technique for Gold Exploration: Alkali Element Mobility Associated with Gold Mineralization in the West Australian Goldfields. EconomicGeology, 99, 313-324. https://doi.org/10.2113/gsecongeo.99.2.313
[48]
Hughes, C.J. (1972) Spilites, Keratophyres, and the Igneous Spectrum. GeologicalMagazine, 109, 513-527. https://doi.org/10.1017/s0016756800042795
[49]
Trepanier, S. (2011) Guide pratique d’utilisation des différentes méthodes de traitement de l’altération et du métasomatisme. Consorem, UQAC.
[50]
Van Gerven, M. (1995) Geochemische Nebengesteins Alterationen and Erfassung Signifi kanter Zonierungen im Bereich des Jade-Erzfeldes, Okinawa, Trog, Japan. Ph.D. Thesis, Freir Universitate, Rohstoff and Umweltgeologie, 186.
[51]
Guo, N., Guo, W., Shi, W., Huang, Y., Guo, Y. and Lian, D. (2020) Characterization of Illite Clays Associated with the Sinongduo Low Sulfidation Epithermal Deposit, Central Tibet Using Field SWIR Spectrometry. OreGeologyReviews, 120, Article ID: 103228. https://doi.org/10.1016/j.oregeorev.2019.103228
[52]
Deer, W.A., Howie, R. A. and Zussman, J. (1992) An Introduction to the Rock-Forming Minerals. Sheet Silicates. Longman Scientific & Technical/Wiley, 549.
[53]
Franz, G. and Liebscher, A. (2004) Physical and Chemical Properties of the Epidote Minerals: An Introduction. Reviews in Mineralogy & Geochemistry, 56, 1-82. https://doi.org/10.1515/9781501509599-004
[54]
Trdlicka, Z. and Hoffman, V. (1976) Untersuchungen der chemischen Zusammensetzung der Gangkarbonate von Kutna Hora/CSSR. FreibergerForschungshefte, 321, 29-81.
Leake, B.E. (1971) On Aluminous and Edenitic Hornblendes. Mineralogical Magazine, 38, 389-407. https://doi.org/10.1180/minmag.1971.038.296.01
[57]
Leake, B.E., Woolley, A.R., Arps, C.E.S., Birch, W.D., Gilbert, M.C., Grice, J.D., et al. (1997) Nomenclature of Amphiboles Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names. EuropeanJournalofMineralogy, 9, 623-651. https://doi.org/10.1127/ejm/9/3/0623
[58]
Parra-Avila, L.A., Belousova, E., Fiorentini, M.L., Baratoux, L., Davis, J., Miller, J., et al. (2016) Crustal Evolution of the Paleoproterozoic Birimian Terranes of the Baoulé-Mossi Domain, Southern West African Craton: U-Pb and Hf-Isotope Studies of Detrital Zircons. PrecambrianResearch, 274, 25-60. https://doi.org/10.1016/j.precamres.2015.09.005
[59]
Cooke, D.R., Hollings, P., Wilkinson, J.J. and Tosdal, R.M. (2014) Geochemistry of Porphyry Deposits. In: Holland, H.D. and Turekian, K.K., Eds., TreatiseonGeochemistry, Elsevier, 357-381. https://doi.org/10.1016/b978-0-08-095975-7.01116-5
[60]
Wilkinson, J.J., Chang, Z., Cooke, D.R., Baker, M.J., Wilkinson, C.C., Inglis, S., et al. (2015) The Chlorite Proximitor: A New Tool for Detecting Porphyry Ore Deposits. JournalofGeochemicalExploration, 152, 10-26. https://doi.org/10.1016/j.gexplo.2015.01.005
[61]
Wilkinson, J.J., Cooke, D.R., Baker, M.J., Chang, Z., Wilkinson, C.C., Chen, H., et al. (2017) Porphyry Indicator Minerals and Their Mineral Chemistry as Vectoring and Fertility Tools: Geological Survey of Canada. Open File 8345, 67-77.
[62]
Wilkinson, J.J., Pacey, A., Hart-Madigan, L.A., Longridge, J., Cooke, D.R., Baker, M.J., et al. (2019) A New Paradigm for the Origin of Propylitic Alteration in Porphyry Ore Systems. AppliedEarthScience, 128, 64-65. https://doi.org/10.1080/25726838.2019.1607194
[63]
Cooke, D.R., Agnew, P., Hollings, P., Baker, M., Chang, Z., Wilkinson, J.J., et al. (2020) Recent Advances in the Application of Mineral Chemistry to Exploration for Porphyry Copper-Gold-Molybdenum Deposits: Detecting the Geochemical Fingerprints and Footprints of Hypogene Mineralization and Alteration. Geochemistry: Exploration, Environment, Analysis, 20, 176-188. https://doi.org/10.1144/geochem2019-039
[64]
Li, F., Tang, J., Song, Y., Li, S., Tang, P., Li, H., et al. (2024) Major Elements Geochemistry of Chlorite in Different Ore Deposits and Its Genesis and Exploration Significance: A Case Study from Naruo Porphyry Cu Deposit in Duolong Ore District, Tibet. FrontiersinEarthScience, 12, Article ID: 1378820. https://doi.org/10.3389/feart.2024.1378820
[65]
Djouka-Fonkwe, M.L., Kyser, K., Clark, A.H., Urqueta, E., Oates, C.J. and Ihlenfeld, C. (2012) Recognizing Propylitic Alteration Associated with Porphyry Cu-Mo Deposits in Lower Greenschist Facies Metamorphic Terrain of the Collahuasi District, Northern Chile—Implications of Petrographic and Carbon Isotope Relationships. EconomicGeology, 107, 1457-1478. https://doi.org/10.2113/econgeo.107.7.1457
[66]
Mathieu, L. (2018) Quantifying Hydrothermal Alteration: A Review of Methods. Geosciences, 8, Article No. 245. https://doi.org/10.3390/geosciences8070245
[67]
Williamson, B.J., Herrington, R.J. and Morris, A. (2016) Porphyry Copper Enrichment Linked to Excess Aluminium in Plagioclase. NatureGeoscience, 9, 237-241. https://doi.org/10.1038/ngeo2651
[68]
Harris, A.C. and Golding, S.D. (2002) New Evidence of Magmatic-Fluid-Related Phyllic Alteration: Implications for the Genesis of Porphyry Cu Deposits. Geology, 30, 335-338. https://doi.org/10.1130/0091-7613(2002)030<0335:neomfr>2.0.co;2
[69]
Robb, L. (2005) Introduction to Ore-Forming Processes. Blackwell Sciences Ltd., 376 p.
[70]
Boomeri, M., Moradi, R., Stein, H. and Bagheri, S. (2019) Geology, Re-Os Age, S and O Isotopic Composition of the Lar Porphyry Cu-Mo Deposit, Southeast Iran. OreGeologyReviews, 104, 477-494. https://doi.org/10.1016/j.oregeorev.2018.11.018
[71]
Khashgerel, B.-E., Rye, R.O., Hedenquist, J.W. and Kavalieris, I. (2006) Geology and Reconnaissance Stable Isotope Study of the Oyu Tolgoi Porphyry Cu-Au System, South Gobi, Mongolia. EconomicGeology, 101, 503-522. https://doi.org/10.2113/gsecongeo.101.3.503
[72]
Porter, T.M. (2016) The Geology, Structure and Mineralisation of the Oyu Tolgoi Porphyry Copper-Gold-Molybdenum Deposits, Mongolia: A Review. GeoscienceFrontiers, 7, 375-407. https://doi.org/10.1016/j.gsf.2015.08.003
[73]
Ferraq, M., Belkacim, S., Cheng, L., Davies, J.H.F.L., Perrot, M.G., Ben-Tami, A., et al. (2024) New Geochemical and Geochronological Constraints on the Genesis of the Imourkhssen Cu±Mo±Au±Ag Porphyry Deposit (Ouzellagh-Siroua Salient, Anti-Atlas, Morocco): Geodynamic and Metallogenic Implications. Minerals, 14, Article No. 832. https://doi.org/10.3390/min14080832