Correlation between Surface OH? Groups and Fractal Dimensions of Synthetic Boehmite, Goethite, and Manganite: Insights into Their Physical-Adsorbent Properties
The oxyhydroxides boehmite, goethite, and manganite were synthesized, and their structure, texture, and morphology features were determined by different analytical techniques. Content of surface hydroxyl groups and zero point of charge (pHzpc) were measured by potentiometry, and the surface fractal dimension (Df) values were obtained through adsorption-desorption N2 isotherms and the Pfeifer and Cole method. The synthesized materials resulted crystalline, mesoporous, pure, and thermally stable, exhibiting high surface areas, between 188 and 413 m2/g. The pHzpc values were 9.2, 12.4, and 2.2 and surface hydroxyl group contents were for 1.16, 1.7, and 0.855 meq OH?/g, for boehmite, goethite, and manganite, respectively. Surface fractal dimensions were 1.5, 1.7, and 1.4 for boehmite, goethite and manganite, respectively, denoting relatively smooth surfaces. Surface hydroxyl group content linearly correlated with Df values. Characterization of these oxyhydroxides is valuable for several physicochemical adsorption processes of contaminants present in aqueous media.
References
[1]
Rajandran, P., Masngut, N., Manas, N.H.A., Azelee, N.I.W., Fuzi, S.F.Z.M. and Bunyamin, M.A.H. (2024) Fixed-bed Adsorption for Industrial Wastewater Purification: An In-Depth Review. InternationalJournalofEnvironmentalScienceandTechnology, 22, 3943-3964. https://doi.org/10.1007/s13762-024-06034-4
[2]
Hussain, M., Riaz, A., Zeb, H., Ali, A., Mujahid, R., Ahmad, F., et al. (2025) Paving the Path to Water Security: The Role of Advanced Adsorbents in Wastewater Treatment. JournalofWaterProcessEngineering, 71, Article ID: 107333. https://doi.org/10.1016/j.jwpe.2025.107333
[3]
Macena, M., Pereira, H., Cruz-Lopes, L., Grosche, L. and Esteves, B. (2025) Competitive Adsorption of Metal Ions by Lignocellulosic Materials: A Review of Applications, Mechanisms and Influencing Factors. Separations, 12, Article 70. https://doi.org/10.3390/separations12030070
[4]
Tamjidi, S., Moghadas, B.K., Esmaeili, H., Shakerian Khoo, F., Gholami, G. and Ghasemi, M. (2021) Improving the Surface Properties of Adsorbents by Surfactants and Their Role in the Removal of Toxic Metals from Wastewater: A Review Study. ProcessSafetyandEnvironmentalProtection, 148, 775-795. https://doi.org/10.1016/j.psep.2021.02.003
[5]
Zhan, H., Li, X., Hu, Z., Chen, L., Shen, W., Guo, W., et al. (2025) Effect of Particle Size on Pore Structure and Fractal Characteristics of Deep Siliceous Shales in Southern Sichuan, China, Measured Using Small-Angle Neutron Scattering and Low-Pressure Nitrogen Adsorption. FractalandFractional, 9, Article 165. https://doi.org/10.3390/fractalfract9030165
[6]
Pfeifer, P. (1988) Fractals in Surface Science: Scattering and Thermodynamics of Adsorbed Films. In: Vanselow, R. and Howe, R., Eds., Chemistry and Physics of Solid Surfaces VII, Springer, 283-305. https://doi.org/10.1007/978-3-642-73902-6_10
[7]
Pfeifer, P. and Avnir, D. (1983) Chemistry in Noninteger Dimensions between Two and Three. I. Fractal Theory of Heterogeneous Surfaces. The Journal of Chemical Physics, 79, 3558-3565. https://doi.org/10.1063/1.446210
[8]
Martin, J.E., Schaefer, D.W. and Hurd, A.J. (1986) Fractal Geometry of Vapor-Phase Aggregates. PhysicalReviewA, 33, 3540-3543. https://doi.org/10.1103/physreva.33.3540
[9]
Jaroniec, M. (1995) Evaluation of the Fractal Dimension from a Single Adsorption Isotherm. Langmuir, 11, 2316-2317. https://doi.org/10.1021/la00006a076
[10]
Tomchuk, O.V. (2020) The Concept of Fractals in the Structural Analysis of Nanosystems: A Retrospective Look and Prospects. UkrainianJournalofPhysics, 65, 709. https://doi.org/10.15407/ujpe65.8.709
[11]
Rodríguez-Cuadrado, J. and San Martín, J. (2022) Shielding Material Distributions and Associated Fractals. Chaos, Solitons & Fractals, 158, Article ID: 112008. https://doi.org/10.1016/j.chaos.2022.112008
[12]
Tang, S., Huang, J., Duan, L., Yu, P. and Chen, E. (2020) A Review on Fractal Footprint of Cement-Based Materials. PowderTechnology, 370, 237-250. https://doi.org/10.1016/j.powtec.2020.05.065
[13]
Li, L., Li, Z., Cao, M., Tang, Y. and Zhang, Z. (2021) Nanoindentation and Porosity Fractal Dimension of Calcium Carbonate Whisker Reinforced Cement Paste after Elevated Temperatures (UP to 900˚C). Fractals, 29, Article ID: 2140001. https://doi.org/10.1142/s0218348x21400016
[14]
Yang, X., Li, L., Dai, H. and Jia, M. (2021) Effect of Fractal Dimension in Concrete Meso-Structure on Its Axial Mechanical Behavior: A Numerical Case Study. Fractals, 29, Article ID: 2140011. https://doi.org/10.1142/s0218348x21400119
[15]
Wang, L., Zeng, X., Yang, H., Lv, X., Guo, F., Shi, Y., et al. (2021) Investigation and Application of Fractal Theory in Cement-Based Materials: A Review. FractalandFractional, 5, Article 247. https://doi.org/10.3390/fractalfract5040247
[16]
Wang, L., Lu, X., Liu, L., Xiao, J., Zhang, G., Guo, F., et al. (2022) Influence of MgO on the Hydration and Shrinkage Behavior of Low Heat Portland Cement-Based Materials via Pore Structural and Fractal Analysis. FractalandFractional, 6, Article 40. https://doi.org/10.3390/fractalfract6010040
[17]
Farin, D. and Avnir, D. (1989) The Effects of the Fractal Geometry of Surfaces on the Adsorption Conformation of Polymers at Monolayer Coverage Part I. The Case of Polystyrene. ColloidsandSurfaces, 37, 155-170. https://doi.org/10.1016/0166-6622(89)80115-5
[18]
Contreras-Ruiz, J.C., Martínez-Gallegos, M.S. and Ordoñez-Regil, E. (2016) Surface Fractal Dimension of Composites TiO2-Hydrotalcite. Materials Characterization, 121, 17-22. https://doi.org/10.1016/j.matchar.2016.09.032
[19]
Vilchis-Granados, J., Granados-Correa, F. and Barrera-Díaz, C.E. (2013) Surface Fractal Dimensions and Textural Properties of Mesoporous Alkaline-Earth Hydroxyapatites. AppliedSurfaceScience, 279, 97-102. https://doi.org/10.1016/j.apsusc.2013.04.042
[20]
Alvarado-Ibarra, Y., Granados-Correa, F., Lara, V.H., Bosch, P. and Bulbulian, S. (2009) Nickel (II) Sorption on Porous ZnO Prepared by Solution Combustion Method. ColloidsandSurfacesA: PhysicochemicalandEngineeringAspects, 345, 135-140. https://doi.org/10.1016/j.colsurfa.2009.04.045
[21]
Dong, X., Zhang, X., Liu, B., Wang, H., Li, Y., Huang, Y., et al. (2006) Controlled Synthesis of Manganese Oxohydroxide (MnOOH) and Mn3O4 Nanorods Using Novel Reverse Micelles. JournalofNanoscienceandNanotechnology, 6, 818-822. https://doi.org/10.1166/jnn.2006.115
[22]
Okada, K., Nagashima, T., Kameshima, Y., Yasumori, A. and Tsukada, T. (2002) Relationship between Formation Conditions, Properties, and Crystallite Size of Boehmite. JournalofColloidandInterfaceScience, 253, 308-314. https://doi.org/10.1006/jcis.2002.8535
[23]
Inoue, K., Kwon, S., Suzuki, S., Saito, M. and Waseda, Y. (2006) Atomic-Scale Structure and Morphology of Ferric Oxyhydroxides Formed by Corrosion of an Iron-Silicon Alloy. MaterialsTransactions, 47, 243-246. https://doi.org/10.2320/matertrans.47.243
[24]
Crisostomo, V.M.B., Ngala, J.K., Alia, S., Dobley, A., Morein, C., Chen, C., et al. (2007) New Synthetic Route, Characterization, and Electrocatalytic Activity of Nanosized Manganite. ChemistryofMaterials, 19, 1832-1839. https://doi.org/10.1021/cm062871z
[25]
Liu, X., Qiu, G., Yan, A., Wang, Z. and Li, X. (2007) Hydrothermal Synthesis and Characterization of α-FeOOH and α-Fe2O3 Uniform Nanocrystallines. JournalofAlloysandCompounds, 433, 216-220. https://doi.org/10.1016/j.jallcom.2006.06.029
[26]
Swedlund, P.J., Webster, J.G. and Miskelly, G.M. (2009) Goethite Adsorption of Cu(II), Pb(II), Cd(II), and Zn(II) in the Presence of Sulfate: Properties of the Ternary Complex. GeochimicaetCosmochimicaActa, 73, 1548-1562. https://doi.org/10.1016/j.gca.2008.12.007
[27]
Granados-Correa, F., Corral-Capulin, N.G., Olguín, M.T. and Acosta-León, C.E. (2011) Comparison of the Cd(II) Adsorption Processes between Boehmite (γ-AlOOH) and Goethite (α-FeOOH). ChemicalEngineeringJournal, 171, 1027-1034. https://doi.org/10.1016/j.cej.2011.04.055
[28]
Wang, X., He, M., Lin, C., Gao, Y. and Zheng, L. (2012) Antimony(III) Oxidation and Antimony(V) Adsorption Reactions on Synthetic Manganite. Geochemistry, 72, 41-47. https://doi.org/10.1016/j.chemer.2012.02.002
[29]
Vázquez, A., López, T., Gómez, R., Bokhimi, Morales, A. and Novaro, O. (1997) X-ray Diffraction, FTIR, and NMR Characterization of Sol-Gel Alumina Doped with Lanthanum and Cerium. JournalofSolidStateChemistry, 128, 161-168. https://doi.org/10.1006/jssc.1996.7135
[30]
Boumaza, A., Favaro, L., Lédion, J., Sattonnay, G., Brubach, J.B., Berthet, P., et al. (2009) Transition Alumina Phases Induced by Heat Treatment of Boehmite: An X-Ray Diffraction and Infrared Spectroscopy Study. JournalofSolidStateChemistry, 182, 1171-1176. https://doi.org/10.1016/j.jssc.2009.02.006
[31]
Giovanoli, R. and Leuenberger, U. (1969) Über die Oxydation von Manganoxidhy-droxid. HelveticaChimicaActa, 52, 2333-2347. https://doi.org/10.1002/hlca.19690520815
[32]
Tanada, S., Kabayama, M., Kawasaki, N., Sakiyama, T., Nakamura, T., Araki, M., et al. (2003) Removal of Phosphate by Aluminum Oxide Hydroxide. JournalofColloidandInterfaceScience, 257, 135-140. https://doi.org/10.1016/s0021-9797(02)00008-5
[33]
Kosmulski, M. (2004) pH-Dependent Surface Charging and Points of Zero Charge II. Update. JournalofColloidandInterfaceScience, 275, 214-224. https://doi.org/10.1016/j.jcis.2004.02.029
[34]
Granados-Correa, F. and Jiménez-Becerril, J. (2009) Chromium (VI) Adsorption on Boehmite. JournalofHazardousMaterials, 162, 1178-1184. https://doi.org/10.1016/j.jhazmat.2008.06.002
[35]
Brigante, M., Zanini, G. and Avena, M. (2010) Effect of Humic Acids on the Adsorption of Paraquat by Goethite. JournalofHazardousMaterials, 184, 241-247. https://doi.org/10.1016/j.jhazmat.2010.08.028
[36]
Chen, W., Wang, N., Liu, L., Cui, Y., Cao, X., Chen, Q., et al. (2009) Facile Synthesis of Manganite Nanowires: Phase Transitions and Their Electrocatalysis Performance. Nanotechnology, 20, Article ID: 445601. https://doi.org/10.1088/0957-4484/20/44/445601
[37]
Li, F., Wu, J., Qin, Q., Li, Z. and Huang, X. (2010) Facile Synthesis of γ-MnOOH Micro/Nanorods and Their Conversion to β-MnO2, Mn3O4. JournalofAlloysandCompounds, 492, 339-346. https://doi.org/10.1016/j.jallcom.2009.11.089
[38]
Ghosh, M.K., Poinern, G.E.J., Issa, T.B. and Singh, P. (2011) Arsenic Adsorption on Goethite Nanoparticles Produced through Hydrazine Sulfate Assisted Synthesis Method. KoreanJournalofChemicalEngineering, 29, 95-102. https://doi.org/10.1007/s11814-011-0137-y
[39]
Teoh, G.L., Liew, K.Y. and Mahmood, W.A.K. (2007) Synthesis and Characterization of Sol-Gel Alumina Nanofibers. JournalofSol-GelScienceandTechnology, 44, 177-186. https://doi.org/10.1007/s10971-007-1631-x
[40]
Kim, S., Lee, Y., Jun, K., Park, J. and Potdar, H.S. (2007) Synthesis of Thermo-Stable High Surface Area Alumina Powder from Sol-Gel Derived Boehmite. Materials ChemistryandPhysics, 104, 56-61. https://doi.org/10.1016/j.matchemphys.2007.02.044
[41]
Betancur, J.D., Barrero, C.A., Greneche, J.M. and Goya, G.F. (2004) The Effect of Water Content on the Magnetic and Structural Properties of Goethite. JournalofAlloysandCompounds, 369, 247-251. https://doi.org/10.1016/j.jallcom.2003.09.046
[42]
Chen, X.Y., Zhang, Z.J., Li, X.L. and Lee, S.W. (2008) Controlled Hydrothermal Synthesis of Colloidal Boehmite (γ-AlOOH) Nanorods and Nanoflakes and Their Conversion into γ-Al2O3 Nanocrystals. SolidStateCommunications, 145, 368-373. https://doi.org/10.1016/j.ssc.2007.11.033
[43]
Rădiţoiu, V., Diamandescu, L., Cosmin Corobea, M., Rădiţoiu, A., Popescu-Pogrion, N. and Andi Nicolae, C. (2012) A Facile Hydrothermal Route for the Synthesis of α-FeOOH with Controlled Morphology. JournalofCrystalGrowth, 348, 40-46. https://doi.org/10.1016/j.jcrysgro.2012.03.032
[44]
Chen, Y.H. (2013) Thermal Properties of Nanocrystalline Goethite, Magnetite, and Maghemite. JournalofAlloysandCompounds, 553, 194-198. https://doi.org/10.1016/j.jallcom.2012.11.102
[45]
Yuan, Z., Ren, T., Du, G. and Su, B. (2005) Facile Preparation of Single-Crystalline Nanowires of γMnOOH and βMnO2. AppliedPhysicsA, 80, 743-747. https://doi.org/10.1007/s00339-004-3131-y
[46]
Gao, T., Norby, P., Krumeich, F., Okamoto, H., Nesper, R. and Fjellvåg, H. (2009) Synthesis and Properties of Layered-Structured Mn5O8 Nanorods. TheJournalofPhysicalChemistryC, 114, 922-928. https://doi.org/10.1021/jp9097606
[47]
Kosmulski, M., Durand-Vidal, S., Mączka, E. and Rosenholm, J.B. (2004) Morphology of Synthetic Goethite Particles. JournalofColloidandInterfaceScience, 271, 261-269. https://doi.org/10.1016/j.jcis.2003.10.032
[48]
Islam, M.A., Angove, M.J., Morton, D.W., Pramanik, B.K. and Awual, M.R. (2020) A Mechanistic Approach of Chromium (VI) Adsorption onto Manganese Oxides and Boehmite. JournalofEnvironmentalChemicalEngineering, 8, Article ID: 103515. https://doi.org/10.1016/j.jece.2019.103515
[49]
Hongshao, Z. and Stanforth, R. (2001) Competitive Adsorption of Phosphate and Arsenate on Goethite. EnvironmentalScience&Technology, 35, 4753-4757. https://doi.org/10.1021/es010890y
[50]
Pan, G., Qin, Y., Li, X., Hu, T., Wu, Z. and Xie, Y. (2004) EXAFS Studies on Adsorption-desorption Reversibility at Manganese Oxides-Water Interfaces: I. Irreversible Adsorption of Zinc onto Manganite (γ-MnOOH). JournalofColloidandInterfaceScience, 271, 28-34. https://doi.org/10.1016/j.jcis.2003.11.028
[51]
Bochatay, L., Persson, P. and Sjöberg, S. (2000) Metal Ion Coordination at the Water-Manganite (γ-MnOOH) Interface: I. An EXAFS Study of Cadmium (II). JournalofColloidandInterfaceScience, 229, 584-592. https://doi.org/10.1006/jcis.2000.7013
[52]
Paglia, G., Buckley, C.E., Udovic, T.J., Rohl, A.L., Jones, F., Maitland, C.F., et al. (2004) Boehmite-Derived γ-Alumina System. 2. Consideration of Hydrogen and Surface Effects. ChemistryofMaterials, 16, 1914-1923. https://doi.org/10.1021/cm035193e
[53]
Pernyeszi, T. and Dékány, I. (2003) Surface Fractal and Structural Properties of Layered Clay Minerals Monitored by Small-Angle X-Ray Scattering and Low-Temperature Nitrogen Adsorption Experiments. ColloidandPolymerScience, 281, 73-78. https://doi.org/10.1007/s00396-002-0758-0
[54]
Avnir, D., Farin, D. and Pfeifer, P. (1985) Surface Geometric Irregularity of Particulate Materials: The Fractal Approach. JournalofColloidandInterfaceScience, 103, 112-123. https://doi.org/10.1016/0021-9797(85)90082-7
[55]
Ismail, I.M.K. and Pfeifer, P. (1994) Fractal Analysis and Surface Roughness of Nonporous Carbon Fibers and Carbon Blacks. Langmuir, 10, 1532-1538. https://doi.org/10.1021/la00017a035
[56]
Raoufi, D., Kiasatpour, A., Fallah, H.R. and Rozatian, A.S.H. (2007) Surface Characterization and Microstructure of ITO Thin Films at Different Annealing Temperatures. AppliedSurfaceScience, 253, 9085-9090. https://doi.org/10.1016/j.apsusc.2007.05.032