|
芴衍生物合成研究
|
Abstract:
芴衍生物(Fluorene)作为多环芳烃(PAHs)家族的重要成员在生物医学、药物研发、光电材料、有机金属催化等领域有着广泛的应用前景。在过去几十年里,芴衍生物的合成引起了合成化学家的广泛关注。鉴于人们对这一领域日益增长的兴趣以及该领域快速发展的研究态势,本文对芴衍生物合成方法的最新进展进行了总结。这篇综述旨在为从事芴衍生物合成的研究人员提供有价值的参考,从而推动该领域的进一步探索和创新。
Fluorene derivatives, as important members of the polycyclic aromatic hydrocarbons (PAHs) family, have broad application prospects in biomedical, pharmaceutical research, optoelectronic materials, organometallic catalysis, and other fields. In the past few decades, the synthesis of fluorene derivatives has attracted widespread attention from synthetic chemists. Given the growing interest in this field and the rapidly developing research trend, this article summarizes the latest progress in the synthesis methods of fluorene derivatives. This review aims to provide valuable references for researchers engaged in the synthesis of fluorene derivatives, thereby promoting further exploration and innovation in this field.
[1] | Wei, X., Bai, C., Wang, A., Feng, Q., Zhao, L., Zhang, P., et al. (2021) Lewis Acid Enables Ketone Phosphorylation to Form a C-P Bond and a C-C Bond: Synthesis of 9-Phosphoryl Fluorene Derivatives. Organic Letters, 23, 7100-7105. https://doi.org/10.1021/acs.orglett.1c02504 |
[2] | Banala, A.K., Levy, B.A., Khatri, S.S., Furman, C.A., Roof, R.A., Mishra, Y., et al. (2011) N-(3-Fluoro-4-(4-(2-Methoxy or 2, 3-Dichlorophenyl)piperazine-1-Yl)butyl)Arylcarboxamides as Selective Dopamine D3 Receptor Ligands: Critical Role of the Carboxamide Linker for D3 Receptor Selectivity. Journal of Medicinal Chemistry, 54, 3581-3594. https://doi.org/10.1021/jm200288r |
[3] | Beutler, U., Fuenfschilling, P.C. and Steinkemper, A. (2007) An Improved Manufacturing Process for the Antimalaria Drug Coartem. Part II. Organic Process Research & Development, 11, 341-345. https://doi.org/10.1021/op060244p |
[4] | Qu, Y. and Li, Y. (2025) Structural Insights and Molecular Advancements in Fluorene-Based Electroluminescent Materials: A Mini-Review. Journal of Molecular Structure, 1330, Article ID: 141466. https://doi.org/10.1016/j.molstruc.2025.141466 |
[5] | Justin Thomas, K.R. and Baheti, A. (2013) Fluorene Based Organic Dyes for Dye Sensitised Solar Cells: Structure–property Relationships. Materials Technology, 28, 71-87. https://doi.org/10.1179/1753555712y.0000000036 |
[6] | Selikhov, A.N., Lapshin, I.V., Cherkasov, A.V., Fukin, G.K. and Trifonov, A.A. (2021) Sandwich and Half-Sandwich Ln(II) (Ln = Sm, Yb) Complexes with Bulky Fluorenyl Ligands. Competitive Abstraction of H or SiMe3 from 2,7-t Bu2-9-SiMe3-Fluorene by an Amido Anion. Organometallics, 40, 3042-3049. https://doi.org/10.1021/acs.organomet.1c00406 |
[7] | Kirillov, E., Dash, A.K., Rodrigues, A. and Carpentier, J. (2006) Ansa-Metallocene and Half-Sandwich Complexes of Group-3 Metals and Lanthanides Incorporating Fluorenyl-Based Ligands: From Synthesis to Catalytic Applications. Comptes Rendus. Chimie, 9, 1151-1157. https://doi.org/10.1016/j.crci.2005.12.005 |
[8] | Liu, X., Luo, H., Huang, Y., Bao, J., Tang, G., Chen, Y., et al. (2013) Selaginpulvilins A-D, New Phosphodiesterase-4 Inhibitors with an Unprecedented Skeleton from Selaginella pulvinata. Organic Letters, 16, 282-285. https://doi.org/10.1021/ol403282f |
[9] | Deng, Y., Jiang, K., Cai, M., Qu, S., Dai, Y. and Tan, C. (2017) The Synthesis of Dendroflorin. Journal of Asian Natural Products Research, 19, 602-609. https://doi.org/10.1080/10286020.2017.1324953 |
[10] | Luo, Y., Liu, Z., Yang, G., Wang, T., Bin, Z., Lan, J., et al. (2021) Iridium(III)‐Catalyzed Diarylation/Annulation of Benzoic Acids: Facile Access to Multi‐Aryl Spirobifluorenes as Pure Hydrocarbon Hosts for High‐Performance OLEDs. Angewandte Chemie International Edition, 60, 18852-18859. https://doi.org/10.1002/anie.202106315 |
[11] | Shi, G., Chen, D., Jiang, H., Zhang, Y. and Zhang, Y. (2016) Synthesis of Fluorenes Starting from 2-Iodobiphenyls and Ch2Br2 through Palladium-Catalyzed Dual C-C Bond Formation. Organic Letters, 18, 2958-2961. https://doi.org/10.1021/acs.orglett.6b01300 |
[12] | Cai, Z., Hou, X., Hou, L., Hu, Z., Zhang, B. and Jin, Z. (2015) One-Pot Palladium(II)-Catalyzed Synthesis of Fluorenones via Decarboxylative Cyclization. Synlett, 27, 395-398. https://doi.org/10.1055/s-0035-1560527 |
[13] | Xu, S., Chen, R., Fu, Z., Zhou, Q., Zhang, Y. and Wang, J. (2017) Palladium-Catalyzed Formal [4 + 1] Annulation via Metal Carbene Migratory Insertion and C(Sp2)-H Bond Functionalization. ACS Catalysis, 7, 1993-1997. https://doi.org/10.1021/acscatal.6b03562 |
[14] | Konishi, H., Futamata, S., Wang, X. and Manabe, K. (2018) Rapid Formation of Fluoren‐9‐Ones via Palladium‐Catalyzed External Carbon Monoxide‐Free Carbonylation. Advanced Synthesis & Catalysis, 360, 1805-1809. https://doi.org/10.1002/adsc.201800155 |
[15] | Ma, D., Shi, G., Wu, Z., Ji, X. and Zhang, Y. (2018) Synthesis of 9, 9-Disubstituted Fluorenes from 2-Iodobiphenyls and α-Diazoesters under Palladium Catalysis. The Journal of Organic Chemistry, 83, 1065-1072. https://doi.org/10.1021/acs.joc.7b02885 |
[16] | Liu, X., Sheng, H., Zhou, Y. and Song, Q. (2021) Pd-Catalyzed Assembly of Fluoren-9-Ones by Merging of C-H Activation and Difluorocarbene Transfer. Organic Letters, 23, 2543-2547. https://doi.org/10.1021/acs.orglett.1c00467 |
[17] | Sun, D., Li, B., Lan, J., Huang, Q. and You, J. (2016) Chelation-Assisted Pd-Catalysed Ortho-Selective Oxidative C-H/C-H Cross-Coupling of Aromatic Carboxylic Acids with Arenes and Intramolecular Friedel-Crafts Acylation: One-Pot Formation of Fluorenones. Chemical Communications, 52, 3635-3638. https://doi.org/10.1039/c6cc00103c |
[18] | Patel, A., Shaikh, M. and Chikhalia, K. (2019) Palladium Catalyzed Domino C-H Activation Strategy: An Access to 9-Fluorenones. Tetrahedron, 75, 236-245. https://doi.org/10.1016/j.tet.2018.11.055 |
[19] | Fu, W.C. and Kwong, F.Y. (2020) A Denitrogenative Palladium-Catalyzed Cascade for Regioselective Synthesis of Fluorenes. Chemical Science, 11, 1411-1417. https://doi.org/10.1039/C9SC04062E |
[20] | Gorin D.J., Watson I.D. and Toste F.D. (2008) Fluorenes and Styrenes by Au(I)-Catalyzed Annulation of Enynes and Alkynes. Journal of the American Chemical Society, 130, 3736-3737. https://doi.org/10.1021/ja710990d |
[21] | Bucher, J., Wurm, T., Taschinski, S., Sachs, E., Ascough, D., Rudolph, M., et al. (2016) Dual Gold Catalysis: Synthesis of Fluorene Derivatives from Diynes. Advanced Synthesis & Catalysis, 359, 225-233. https://doi.org/10.1002/adsc.201600987 |
[22] | Wilkerson-Hill, S.M., Lavados, C.M. and Sarpong, R. (2016) The Diels-Alder Reactivity of 2-Vinylindenes: Synthesis of Functionalized Tetrahydrofluorenes. Tetrahedron, 72, 3635-3640. https://doi.org/10.1016/j.tet.2016.03.074 |
[23] | Kaiser, R.P., Hessler, F., Mosinger, J., Císařová, I. and Kotora, M. (2015) A [2 + 2 + 2]‐Cyclotrimerization Approach to Selectively Substituted Fluorenes and Fluorenols, and Their Conversion to 9,9′‐Spirobifluorenes. Chemistry—A European Journal, 21, 13577-13582. https://doi.org/10.1002/chem.201502370 |
[24] | Kaiser, R.P., Mosinger, J., Císařová, I. and Kotora, M. (2017) Synthesis of Selectively 4-Substituted 9,9′-Spirobifluorenes and Modulation of Their Photophysical Properties. Organic & Biomolecular Chemistry, 15, 6913-6920. https://doi.org/10.1039/c7ob01319a |
[25] | Ye, F., Haddad, M., Michelet, V. and Ratovelomanana-Vidal, V. (2016) Access toward Fluorenone Derivatives through Solvent-Free Ruthenium Trichloride Mediated [2 + 2 + 2] Cycloadditions. Organic Letters, 18, 5612-5615. https://doi.org/10.1021/acs.orglett.6b02840 |
[26] | Nishida, M., Lee, D. and Shintani, R. (2020) Intermolecular Three-Component Synthesis of Fluorene Derivatives by a Rhodium-Catalyzed Stitching Reaction/remote Nucleophilic Substitution Sequence. The Journal of Organic Chemistry, 85, 8489-8500. https://doi.org/10.1021/acs.joc.0c00790 |
[27] | Hsu, C., Liu, Y. and Liu, S. (2024) Preparation of Benzo[a]Fluorenes via Pd-Catalyzed Annulation of 5-(2-Bromophenyl)Pent-3-En-1-Ynes. The Journal of Organic Chemistry, 89, 12341-12348. https://doi.org/10.1021/acs.joc.4c01286 |
[28] | Song, J., Li, Y., Sun, W., Yi, C., Wu, H., Wang, H., et al. (2016) Efficient Palladium-Catalyzed C(sp2)-H Activation Towards the Synthesis of Fluorenes. New Journal of Chemistry, 40, 9030-9033. https://doi.org/10.1039/c6nj02033j |
[29] | Corrie, T.J.A., Ball, L.T., Russell, C.A. and Lloyd-Jones, G.C. (2016) Au-Catalyzed Biaryl Coupling to Generate 5-to 9-Membered Rings: Turnover-Limiting Reductive Elimination versus Π-Complexation. Journal of the American Chemical Society, 139, 245-254. https://doi.org/10.1021/jacs.6b10018 |
[30] | Gao, Q. and Xu, S. (2018) Palladium-catalyzed Synthesis of Fluoreones from Bis(2-Bromophenyl)Methanols. Organic & Biomolecular Chemistry, 16, 208-212. https://doi.org/10.1039/c7ob02895d |
[31] | Fujihara, T., Tanji, Y. and Tsuji, Y. (2020) Palladium-Catalyzed Synthesis of Fluorenes by Intramolecular C(Sp2)-H Activation at Room Temperature. Synlett, 31, 805-808. https://doi.org/10.1055/s-0039-1690812 |
[32] | Zhao, Z., Jameel, I. and Murphy, G.K. (2019) Vicinal Dichlorination of O-Vinylbiphenyls and the Synthesis of 9-(Arylmethyl) Fluo-Renes via Tandem Friedel-Crafts Alkylations. Synthesis, 51, 2648-2659. https://doi.org/10.1055/s-0037-1611562 |
[33] | Jourjine, I.A.P., Zeisel, L., Krauß, J. and Bracher, F. (2021) Synthesis of Highly Substituted Fluorenones via Metal-Free TBHP-Promoted Oxidative Cyclization of 2-(Aminomethyl)Biphenyls. Application to the Total Synthesis of Nobilone. Beilstein Journal of Organic Chemistry, 17, 2668-2679. https://doi.org/10.3762/bjoc.17.181 |
[34] | Guo, H., Zhang, S., Feng, X., Yu, X., Yamamoto, Y. and Bao, M. (2022) Palladium-Catalyzed Cycloisomerization of 2-Ethynylbiaryls to 9-Methylidene Fluorenes. Organic Letters, 24, 2596-2600. https://doi.org/10.1021/acs.orglett.2c00534 |
[35] | Matsuyama, H., Zhang, X., Terada, M. and Jin, T. (2023) Construction of Alkylidene Fluorene Scaffolds Using Pd-Catalyzed Direct Arene/Alkene Coupling Strategy. Organic Letters, 25, 800-804. https://doi.org/10.1021/acs.orglett.2c04307 |