This research examines the performances of thin-film solar cells utilizing three dilute nitrides based novel absorber layer’s materials GaAsN, GaInAsN, and GaInAsNSb, modeled through SCAPS-1D. Comparative analyses evaluated the effects of absorber layer composition, doping densities, thickness variations, and operating temperature on critical photovoltaic parameters, including short-circuit current density (Jsc), open-circuit voltage (Voc), fill factor (FF), efficiency (η), and quantum efficiency (QE). In this study, GaInAsN-based solar cell (Cell 2) demonstrated the highest efficiency (34.7%) and short-circuit current density (46.8 mA/cm2), while GaAsN (Cell 1) shown reduced performance with Jsc and efficiency reaching maxima of 33.8 mA/cm2 and 30.6%, respectively. These two cell’s efficiency is better than that of GaAs-based solar cell reported previously. Thus, it is concluded that dilute nitrides based structure is better for photovoltaic application and further addition of indium atoms (In) into dilute nitrides played a vital role on the crystallographic, electrical and optical properties in GaInAsN for producing better performance. The third cell (Cell 3) based on GaInAsNSb exhibited a peak efficiency of 31.6%; however, it did not achieve the same levels of Jsc and efficiency as Cell 2 but Cell 1. It seems that the combined effect of In and Sb atoms in GaInAsNSb mitigates the efficiency. Simulations on the proposed structures revealed that Cell 2 maintained superior performance across a range of absorber thicknesses, doping concentrations, and temperatures, showcasing its robustness and adaptability. Cell 3 exhibited better stability compared to Cell 1, especially under diverse environmental conditions. Furthermore, Cell 2 demonstrated larger quantum efficiency in the visible and near-infrared wavelengths, indicating its suitability for high-efficiency photovoltaic applications. This research’s findings obtained by simulation would be highly advantageous for further experimental verification in order to advance photonics-based nanotechnology and renewable energy, which would help to reduce greenhouse gas emissions and the world’s energy crises simultaneously and sustainably.
References
[1]
Owusu, P.A. and Asumadu-Sarkodie, S. (2016) Sustainability Issues and Climate Change Mitigation: A Review of Renewable Energy Sources, Sustainability Issues and Climate Change Mitigation. CogentEngineering, 3, Article ID: 1167990. https://doi.org/10.1080/23311916.2016.1167990
[2]
Ebhota, W.S. and Jen, T. (2019) Fossil Fuels Environmental Challenges and the Role of Solar Photovoltaic Technology Advances in Fast Tracking Hybrid Renewable Energy System. InternationalJournalofPrecisionEngineeringandManufacturing-GreenTechnology, 7, 97-117. https://doi.org/10.1007/s40684-019-00101-9
[3]
Shiyani, T., Mahapatra, S.K. and Banerjee, I. (2023) Plasmonic Solar Cells. Fundamentals of Solar Cell Design, 16, 55-81. https://doi.org/10.1002/9781119725022.ch2
[4]
Bilgen, S. (2014) Structure and Environmental Impact of Global Energy Consumption. RenewableandSustainableEnergyReviews, 38, 890-902. https://doi.org/10.1016/j.rser.2014.07.004
[5]
Islam, M.M. and Hasanuzzaman, M. (2020) Introduction to Energy and Sustainable Development. In: Hasanuzzaman, M.D. and Rahim, N.A., Eds., EnergyforSustainableDevelopment, Elsevier, 1-18. https://doi.org/10.1016/b978-0-12-814645-3.00001-8
[6]
Maka, A.O.M. and Alabid, J.M. (2022) Solar Energy Technology and Its Roles in Sustainable Development. CleanEnergy, 6, 476-483. https://doi.org/10.1093/ce/zkac023
[7]
Kabir, E., Kumar, P., Kumar, S., Adelodun, A.A. and Kim, K. (2018) Solar Energy: Potential and Future Prospects. RenewableandSustainableEnergyReviews, 82, 894-900. https://doi.org/10.1016/j.rser.2017.09.094
[8]
NREL (2021) Documenting a Decade of Cost Declines for PV Systems Documenting a Decade of Cost Declines for PV Systems. The National Renewable Energy Laboratory (NREL), 23-25. https://www.nrel.gov/news/program/2021/documenting-a-decade-of-cost-declines-for-pv-systems.html
[9]
Li, F., Zhou, S., Yuan, J., Qin, C., Yang, Y., Shi, J., et al. (2019) Perovskite Quantum Dot Solar Cells with 15.6% Efficiency and Improved Stability Enabled by an α-CsPbI3/FAPbI3 Bilayer Structure. ACSEnergyLetters, 4, 2571-2578. https://doi.org/10.1021/acsenergylett.9b01920
[10]
Yasodharan, R., Senthilkumar, A.P., Mohankumar, P., Ajayan, J. and Sivabalakrishnan, R. (2020) Investigation and Influence of Layer Composition of Tandem Perovskite Solar Cells for Applications in Future Renewable and Sustainable Energy. Optik, 212, Article ID: 164723. https://doi.org/10.1016/j.ijleo.2020.164723
[11]
Mazzucato, S., Royall, B., Ketlhwaafetse, R., Balkan, N., Salmi, J., Puustinen, J., et al. (2012) Dilute Nitride and GaAs N-I-P-I Solar Cells. NanoscaleResearchLetters, 7, Article No. 631. https://doi.org/10.1186/1556-276x-7-631
[12]
Deshpande, R.A. (2021) Advances in Solar Cell Technology: An Overview. JournalofScientificResearch, 65, 72-75. https://doi.org/10.37398/jsr.2021.650214
[13]
Moon, S., Kim, K., Kim, Y., Heo, J. and Lee, J. (2016) Highly Efficient Single-Junction Gaas Thin-Film Solar Cell on Flexible Substrate. ScientificReports, 6, Article No. 30107. https://doi.org/10.1038/srep30107
[14]
Elshorbagy, M.H., Abdel-Hady, K., Kamal, H. and Alda, J. (2017) Broadband Anti-Reflection Coating Using Dielectric Si3n4 Nanostructures. Application to Amorphous-Si-H Solar Cells. OpticsCommunications, 390, 130-136. https://doi.org/10.1016/j.optcom.2016.12.062
[15]
Chopra, K.L., Paulson, P.D. and Dutta, V. (2004) Thin‐Film Solar Cells: An Overview. ProgressinPhotovoltaics: ResearchandApplications, 12, 69-92. https://doi.org/10.1002/pip.541
[16]
Bi, W.G. and Tu, C.W. (1997) Bowing Parameter of the Band-Gap Energy of GaNxAs1−x. AppliedPhysicsLetters, 70, 1608-1610. https://doi.org/10.1063/1.118630
[17]
Miyoshi, S., Yaguchi, H., Onabe, K., Ito, R. and Shiraki, Y. (1993) Metalorganic Vapor Phase Epitaxy of GaP1−xNx alloys on GaP. AppliedPhysicsLetters, 63, 3506-3508. https://doi.org/10.1063/1.110109
[18]
Bellaiche, L., Wei, S. and Zunger, A. (1997) Band Gaps of GaPN and GaAsN Alloys. AppliedPhysicsLetters, 70, 3558-3560. https://doi.org/10.1063/1.119232
[19]
Bi, W.G. and Tu, C.W. (1996) N Incorporation in InP and Band Gap Bowing of InNxP1−x. JournalofAppliedPhysics, 80, 1934-1936. https://doi.org/10.1063/1.362945
[20]
Weyers, M., Michio Sato, M.S. and Hiroaki Ando, H.A. (1992) Red Shift of Photoluminescence and Absorption in Dilute GaAsN Alloy Layers. JapaneseJournalofAppliedPhysics, 31, L853. https://doi.org/10.1143/jjap.31.l853
[21]
Luque, A. and Martí, A. (1997) Increasing the Efficiency of Ideal Solar Cells by Photon Induced Transitions at Intermediate Levels. PhysicalReviewLetters, 78, 5014-5017. https://doi.org/10.1103/physrevlett.78.5014
[22]
Haque, M.D., Ali, M.H., Hossain, M.M., Hossain, M.S., Hossain, M.I., Halim, M.A., et al. (2022) Design and Analysis of GaAsN Based Solar Cell for Harvesting Visible to Near-Infrared Light. PhysicaScripta, 97, Article ID: 085006. https://doi.org/10.1088/1402-4896/ac7d79
[23]
Wang, L., Elleuch, O., Kojima, N., Ohshita, Y. and Yamaguchi, M. (2014) Simulation Analysis of the Potential Causes for the Low Jsc in GaAsN Solar Cells. Extended Abstracts of the 2014 International Conference on Solid State Devices and Materials, Ibaraki, 8-11 September 2014, 390-400. https://doi.org/10.7567/ssdm.2014.ps-15-1
[24]
Krispin, P., Gambin, V., Harris, J.S. and Ploog, K.H. (2003) Nitrogen-Related Electron Traps in Ga (As, N) Layers (≤ 3% N). JournalofAppliedPhysics, 93, 6095-6099. https://doi.org/10.1063/1.1568523
[25]
Yaguchi, H., Morioke, T., Aoki, T., Hijikata, Y., Yoshida, S., Akiyama, H., et al. (2003) Improvement in the Luminescence Efficiency of GaAsN Alloys by Photoexcitation. PhysicaStatusSolidi (c), 0, 2782-2784. https://doi.org/10.1002/pssc.200303514
[26]
Kondow, M., Uomi, K., Niwa, A., Kitatani, T., Watahiki, S. and Yazawa, Y. (1996) GaInNAs: A Novel Material for Long-Wavelength-Range Laser Diodes with Excellent High-Temperature Performance. JapaneseJournalofAppliedPhysics, 35, Article 1273. https://doi.org/10.1143/jjap.35.1273
[27]
Sabnis, V., Yuen, H. and Wiemer, M. (2012) High-Efficiency Multijunction Solar Cells Employing Dilute Nitrides. AIPConferenceProceedings, 1477, 14-19. https://doi.org/10.1063/1.4753823
[28]
Friedman, D.J., Geisz, J.F., Kurtz, S.R. and Olson, J.M. (1998) 1-eV Solar Cells with Gainnas Active Layer. JournalofCrystalGrowth, 195, 409-415. https://doi.org/10.1016/s0022-0248(98)00561-2
[29]
Kurtz, S.R., Allerman, A.A., Jones, E.D., Gee, J.M., Banas, J.J. and Hammons, B.E. (1999) InGaAsN Solar Cells with 1.0 Ev Band Gap, Lattice Matched to Gaas. AppliedPhysicsLetters, 74, 729-731. https://doi.org/10.1063/1.123105
[30]
Jackrel, D.B., Bank, S.R., Yuen, H.B., Wistey, M.A., Harris, J.S., Ptak, A.J., et al. (2007) Dilute Nitride GaInNAs and GaInNAsSb Solar Cells by Molecular Beam Epitaxy. JournalofAppliedPhysics, 101, Article ID: 114916. https://doi.org/10.1063/1.2744490
[31]
Kondow, M., Kitatani, T., Nakatsuka, S., Larson, M.C., Nakahara, K., Yazawa, Y., et al. (1997) GaInNAs: A Novel Material for Long-Wavelength Semiconductor Lasers. IEEEJournalofSelectedTopicsinQuantumElectronics, 3, 719-730. https://doi.org/10.1109/2944.640627
[32]
Kitatani, T., Nakahara, K., Kondow, M., Uomi, K. and Tanaka, T. (2000) A 1.3-μm GaInNAs/GaAs Single-Quantum-Well Laser Diode with a High Characteristic Temperature over 200 K. JapaneseJournalofAppliedPhysics, 39, L86. https://doi.org/10.1143/jjap.39.l86
[33]
Sato, S. (2000) Low Threshold and High Characteristic Temperature 1.3 μm Range GaInNAs Lasers Grown by Metalorganic Chemical Vapor Deposition. JapaneseJournalofAppliedPhysics, 39, Article 3403. https://doi.org/10.1143/jjap.39.3403
[34]
Riechert, H., Egorov, A.Y., Livshits, D., Borchert, B. and Illek, S. (2000) InGaAsN/GaAs Heterostructures for Long-Wavelength Light-Emitting Devices. Nanotechnology, 11, 201-205. https://doi.org/10.1088/0957-4484/11/4/301
[35]
Fischer, M., Gollub, D. and Forchel, A. (2002) 1.3 μm GaInAsN Laserdiodes with Improved High Temperature Performance. JapaneseJournalofAppliedPhysics, 41, 1162-1163. https://doi.org/10.1143/jjap.41.1162
[36]
Lin, Y., Ma, T., Chen, T. and Lin, H. (2008) Energy Gap Reduction in Dilute Nitride GaAsSbN. AppliedPhysicsLetters, 93, Article ID: 171914. https://doi.org/10.1063/1.3009199
[37]
Isoaho, R., Aho, A., Tukiainen, A., Salminen, T. and Guina, M. (2022) Bandgap Energy Model for GaInNAsSb/GaAs Alloys with High N Content and Strain Influence. JournalofCrystalGrowth, 584, Article ID: 126574. https://doi.org/10.1016/j.jcrysgro.2022.126574
[38]
Harris, J.S., Kudrawiec, R., Yuen, H.B., Bank, S.R., Bae, H.P., Wistey, M.A., et al. (2007) Development of GaInNAsSb Alloys: Growth, Band Structure, Optical Properties and Applications. PhysicaStatusSolidi (b), 244, 2707-2729. https://doi.org/10.1002/pssb.200675620
[39]
Yang, X., Jurkovic, M.J., Heroux, J.B. and Wang, W.I. (1999) Molecular Beam Epitaxial Growth of InGaAsN:Sb/GaAs Quantum Wells for Long-Wavelength Semiconductor Lasers. Applied Physics Letters, 75, 178-180. https://doi.org/10.1063/1.124311
[40]
Isoaho, R., Aho, A., Tukiainen, A., Aho, T., Raappana, M., Salminen, T., et al. (2019) Photovoltaic Properties of Low-Bandgap (0.7-0.9 eV) Lattice-Matched GaInNAsSb Solar Junctions Grown by Molecular Beam Epitaxy on GaAs. SolarEnergyMaterialsandSolarCells, 195, 198-203. https://doi.org/10.1016/j.solmat.2019.02.030
Galiana, B., Rey-Stolle, I., Baudrit, M., García, I. and Algora, C. (2006) A Comparative Study of BSF Layers for GaAs-Based Single-Junction or Multijunction Concentrator Solar Cells. SemiconductorScienceandTechnology, 21, 1387-1392. https://doi.org/10.1088/0268-1242/21/10/003
[43]
Wagle, R., Gaib, R., Shrivastava, A. and Nath Mishra, L. (2020) Modelling and Simulation of AlGaAs/GaAs Solar Cell. American journal of Engineering Research, 9, 218-223. https://www.ajer.org
[44]
Holman, Z.C., De Wolf, S. and Ballif, C. (2013) Improving Metal Reflectors by Suppressing Surface Plasmon Polaritons: A Priori Calculation of the Internal Reflectance of a Solar Cell. Light: Science&Applications, 2, e106. https://doi.org/10.1038/lsa.2013.62
[45]
Baker‐Finch, S.C. and McIntosh, K.R. (2010) Reflection of Normally Incident Light from Silicon Solar Cells with Pyramidal Texture. ProgressinPhotovoltaics: ResearchandApplications, 19, 406-416. https://doi.org/10.1002/pip.1050
[46]
Narayanamurti, V., Kozhevnikov, M., Xin, H.P., Tu, C.W., Mascarenhas, A. and Zhang, Y. (2000) Nitrogen-Induced Evolution of GaAs1-xNx Studied by Ballistic Electron Emission Spectroscopy. NCPVProgramReviewMetting, NationalRenewableEnergyLab (NREL), Colorado, 16-19 April 2000, 7-8.
[47]
Milanova, M., Vitanov, P., Terziyska, P., Koleva, G. and Popov, G. (2013) Nitrogen Incorporation into GaAsN and InGaAsN Layers Grown by Liquid-Phase Epitaxy. PhysicaStatusSolidiC, 10, 597-600. https://doi.org/10.1002/pssc.201200890
[48]
Yuen, H.B., Bank, S.R., Bae, H., Wistey, M.A. and Harris, J.S. (2006) The Role of Antimony on Properties of Widely Varying GaInNAsSb Compositions. JournalofAppliedPhysics, 99, Article ID: 093504. https://doi.org/10.1063/1.2191745
[49]
Verschraegen, J. and Burgelman, M. (2007) Numerical Modeling of Intra-Band Tunneling for Heterojunction Solar Cells in SCAPS. ThinSolidFilms, 515, 6276-6279. https://doi.org/10.1016/j.tsf.2006.12.049
[50]
Hima, A. and Lakhdar, N. (2020) Enhancement of Efficiency and Stability of CH3NH3GeI3 solar cells with CuSbS2. OpticalMaterials, 99, Article ID: 109607. https://doi.org/10.1016/j.optmat.2019.109607
[51]
Pindolia, G., Shinde, S.M. and Jha, P.K. (2022) Optimization of an Inorganic Lead Free RbGeI3 Based Perovskite Solar Cell by SCAPS-1D Simulation. SolarEnergy, 236, 802-821. https://doi.org/10.1016/j.solener.2022.03.053
[52]
Boumesjed, A., Mazari, H. and Ameur, K. (2018) Predicted Theoretical Efficiency for New Intermediate Band Solar Cells (IBSC) Based on GaAs1-xNx. JournalofNewTechnologyandMaterials, 8, 102-109. https://doi.org/10.12816/0048938
[53]
Tang, D., Vijaya, G.K., Mehrotra, A., Freundlich, A. and Smith, D.J. (2016) Investigation of Dilute-Nitride Alloys of GaAsNx (0.01 < X < 0.04) Grown by MBE on Gaas (001) Substrates for Photovoltaic Solar Cell Devices. JournalofVacuumScience&TechnologyB, NanotechnologyandMicroelectronics: Materials, Processing, Measurement, andPhenomena, 34, Article ID: 011210. https://doi.org/10.1116/1.4940127
[54]
Tukiainen, A., Aho, A., Polojarvi, V., Ahorinta, R. and Guina, M. (2016) High Efficiency Dilute Nitride Solar Cells: Simulations Meet Experiments. JournalofGreenEngineering, 5, 113-132. https://doi.org/10.13052/jge1904-4720.5348
[55]
Loke, W.K., Yoon, S.F., Wicaksono, S., Tan, K.H. and Lew, K.L. (2007) Defect-induced Trap-Assisted Tunneling Current in GaInNAs Grown on Gaas Substrate. JournalofAppliedPhysics, 102, Article ID: 054501. https://doi.org/10.1063/1.2775908
[56]
Volz, K., Stolz, W., Teubert, J., Klar, P.J., Heimbrodt, W., Dimroth, F., et al. (n.d.) Doping, Electrical Properties and Solar Cell Application of GaInNAs. In: Erol, A., Ed., Dilute III-V Nitride Semiconductors and Material Systems, Springer, 369-404. https://doi.org/10.1007/978-3-540-74529-7_15
[57]
Li, S., Soong, W.M., Steer, M.J., Zhang, S. and Ng, J.S. (2012) Dilute Nitride GaInNAs and GaInNAsSb for Solar Cell Application. SPIE OPTO-Physics, Simulation, and PhotonicEngineering of Photovoltaic Devices, California, 21 February 2012, 82561E:34.
[58]
Hwang, S., Kim, S., Cheun, H., Lee, H., Lee, B., Hwang, T., et al. (2016) Bandgap Grading and Al0.3Ga0.7As Heterojunction Emitter for Highly Efficient GaAs-Based Solar Cells. SolarEnergyMaterialsandSolarCells, 155, 264-272. https://doi.org/10.1016/j.solmat.2016.06.009
[59]
Chan, H. and Shieh, T. (1991) A Three Dimensional Semiconductor Device Simulator for GaAs/AlGaAs Heterojunction Bipolar Transistor Analysis. IEEETransactionsonElectronDevices, 38, 2427-2432. https://doi.org/10.1109/16.97405
[60]
Debbar, N. and Al-Mashary, B. (2003) Numerical Simulation of GaAs/AlGaAs Heterojunctions Including Interface States and Thermionic Emission. InternationalJournalofModellingandSimulation, 23, 103-108. https://doi.org/10.1080/02286203.2003.11442260
[61]
Ouslimane, T., Et-taya, L., Elmaimouni, L. and Benami, A. (2021) Impact of Absorber Layer Thickness, Defect Density, and Operating Temperature on the Performance of MAPbI3 Solar Cells Based on ZnO Electron Transporting Material. Heliyon, 7, e06379. https://doi.org/10.1016/j.heliyon.2021.e06379
[62]
Singh, P. and Ravindra, N.M. (2012) Temperature Dependence of Solar Cell Performance—An Analysis. SolarEnergyMaterialsandSolarCells, 101, 36-45. https://doi.org/10.1016/j.solmat.2012.02.019
[63]
Abdelfatah, M., Ledig, J., El-Shaer, A., Wagner, A., Marin-Borras, V., Sharafeev, A., et al. (2016) Fabrication and Characterization of Low Cost Cu2O/ZnO:Al Solar Cells for Sustainable Photovoltaics with Earth Abundant Materials. SolarEnergyMaterialsandSolarCells, 145, 454-461. https://doi.org/10.1016/j.solmat.2015.11.015
[64]
Daoudia, A.K., El Hassouani, Y. and Benami, A. (2016) Investigation of the Effect of Thickness, Band Gap and Temperature on the Efficiency of CIGS Solar Cells through SCAPS-1D. International Journal of Engineering Research & Technology, 6, 71.
[65]
Varshni, Y.P. (1967) Temperature Dependence of the Energy Gap in Semiconductors. Physica, 34, 149-154. https://doi.org/10.1016/0031-8914(67)90062-6
[66]
Alam, I. and Ashraf, M.A. (2020) Effect of Different Device Parameters on Tin-Based Perovskite Solar Cell Coupled with In2S3 Electron Transport Layer and CuSCN and Spiro-OMeTAD Alternative Hole Transport Layers for High-Efficiency Performance. EnergySources, PartA: Recovery, Utilization, andEnvironmentalEffects, 46, 17080-17096. https://doi.org/10.1080/15567036.2020.1820628
[67]
Baloch, A.A.B., Aly, S.P., Hossain, M.I., El-Mellouhi, F., Tabet, N. and Alharbi, F.H. (2017) Full Space Device Optimization for Solar Cells. ScientificReports, 7, Article No. 11984. https://doi.org/10.1038/s41598-017-12158-0