全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一类抛物方程在Fourier-Besov-Morrey空间内解的适定性
The Well-Posedness of Solutions to a Class of Parabolic Equations in Fourier-Besov-Morrey Spaces

DOI: 10.12677/aam.2025.146311, PP. 188-197

Keywords: 抛物方程,整体适定性,Fourier-Besov-Morrey空间
Parabolic Equations
, Global Well-Posedness, Fourier-Besov-Morrey Space

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文应用傅里叶局部化方法和Littlewood-Paley定理,在临界Fourier-Besov-Morrey空间 N ˙ p,λ,q s ( 3 ) 对一类抛物方程小初值解的全局适定性问题进行研究,其中 s=22α+ 3 p + λ p
This paper applies the Fourier localization method and the Littlewood-Paley theorem to study the global well-posedness of small initial value solutions for a class of parabolic equations in the critical Fourier-Besov-Morrey spaces N ˙ p,λ,q s ( 3 ) where s=22α+ 3 p + λ p .

References

[1]  Farwig, R. (2017) Jean Leray: Sur le mouvement d’un liquide visqueux emplissant l’espace. Jahresbericht der Deutschen Mathematiker-Vereinigung, 119, 249-272.
https://doi.org/10.1365/s13291-017-0160-y
[2]  Kato, T. (1972) Nonstationary Flows of Viscous and Ideal Fluids in . Journal of Functional Analysis, 9, 296-305.
https://doi.org/10.1016/0022-1236(72)90003-1
[3]  Cannone, M. and Wu, G. (2012) Global Well-Posedness for Navier-Stokes Equations in Critical Fourier-Herz Spaces. Nonlinear Analysis: Theory, Methods & Applications, 75, 3754-3760.
https://doi.org/10.1016/j.na.2012.01.029
[4]  Kato, T. (1992) Strong Solutions of the Navier-Stokes Equation in Morrey Spaces. Boletim da Sociedade Brasileira de Matemática, 22, 127-155.
https://doi.org/10.1007/bf01232939
[5]  Cannone, M. (1995) Ondellettes, Paraproduits et Navier-Stokes. Diderot Editeur.
[6]  Hopf, E. (1950) Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen. Erhard Schmidt zu seinem 75. Geburtstag gewidmet. Mathematische Nachrichten, 4, 213-231.
https://doi.org/10.1002/mana.3210040121
[7]  Fujita, H. and Kato, T. (1964) On the Navier-Stokes Initial Value Problem. I. Archive for Rational Mechanics and Analysis, 16, 269-315.
https://doi.org/10.1007/bf00276188
[8]  Lei, Z. and Lin, F. (2011) Global Mild Solutions of Navier‐Stokes Equations. Communications on Pure and Applied Mathematics, 64, 1297-1304.
https://doi.org/10.1002/cpa.20361
[9]  Xiao, W., Chen, J., Fan, D. and Zhou, X. (2014) Global Well-Posedness and Long Time Decay of Fractional Navier-Stokes Equations in Fourier-Besov Spaces. Abstract and Applied Analysis, 2014, Article ID: 463639.
https://doi.org/10.1155/2014/463639
[10]  El Baraka, A. and Toumlilin, M. (2017) Global Well-Posedness for Fractional Navier-Stokes Equations in Critical Fourier-Besov-Morrey Spaces. Moroccan Journal of Pure and Applied Analysis, 3, 1-13.
https://doi.org/10.1515/mjpaa-2017-0001

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133