%0 Journal Article %T 一类抛物方程在Fourier-Besov-Morrey空间内解的适定性
The Well-Posedness of Solutions to a Class of Parabolic Equations in Fourier-Besov-Morrey Spaces %A 苏健 %J Advances in Applied Mathematics %P 188-197 %@ 2324-8009 %D 2025 %I Hans Publishing %R 10.12677/aam.2025.146311 %X 本文应用傅里叶局部化方法和Littlewood-Paley定理,在临界Fourier-Besov-Morrey空间 N ˙ p,λ,q s ( 3 ) 对一类抛物方程小初值解的全局适定性问题进行研究,其中 s=22α+ 3 p + λ p
This paper applies the Fourier localization method and the Littlewood-Paley theorem to study the global well-posedness of small initial value solutions for a class of parabolic equations in the critical Fourier-Besov-Morrey spaces N ˙ p,λ,q s ( 3 ) where s=22α+ 3 p + λ p . %K 抛物方程, %K 整体适定性, %K Fourier-Besov-Morrey空间
Parabolic Equations %K Global Well-Posedness %K Fourier-Besov-Morrey Space %U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=117587