|
抛物方程的变网格连续时空有限体积元法
|
Abstract:
从三次Lagrange插值最佳应力点的理论出发,本文提出一种变网格连续时空有限体积元格式,旨在解决抛物方程数值求解问题。通过耦合Legendre-Lobatto节点的Lagrange插值多项式与Gauss积分准则,在时空非匹配网格剖分条件下严格证明了数值解的存在唯一性,并建立
和
的最优阶误差估计理论。数值实验结果表明收敛数据与理论预测高度一致,验证了算法在非均匀网格环境中的计算优势与理论分析的有效性。
Based on the theoretical framework of cubic Lagrange interpolation with optimal stress nodes, this study develops a variable mesh continuous space-time finite volume element scheme to resolve numerical challenges in solving parabolic equations. By integrating Lagrange interpolation polynomials at Legendre-Lobatto nodes with Gauss quadrature rules, we rigorously prove the existence and uniqueness of numerical solutions under spacetime non-matching grid partitions. Optimal-order error estimates in
and
norms are theoretically established. Numerical experiments demonstrate excellent agreement between convergence rates and theoretical predictions, confirming the computational advantages of the proposed algorithm in non-uniform grid environments and the validity of theoretical analysis.
[1] | Aziz, A.K. and Monk, P. (1989) Continuous Finite Elements in Space and Time for the Heat Equation. Mathematics of Computation, 52, 255-274. https://doi.org/10.1090/s0025-5718-1989-0983310-2 |
[2] | Bales, L. and Lasiecka, I. (1994) Continuous Finite Elements in Space and Time for the Nonhomogeneous Wave Equation. Computers & Mathematics with Applications, 27, 91-102. https://doi.org/10.1016/0898-1221(94)90048-5 |
[3] | French, D. and Peterson, T. (1996) A Continuous Space-Time Finite Element Method for the Wave Equation. Mathematics of Computation, 65, 491-506. https://doi.org/10.1090/s0025-5718-96-00685-0 |
[4] | Li, H., Zhao, Z. and Luo, Z. (2016) A Space-Time Continuous Finite Element Method for 2D Viscoelastic Wave Equation. Boundary Value Problems, 2016, Article No. 53. https://doi.org/10.1186/s13661-016-0563-1 |
[5] | Karakashian, O. and Makridakis, C. (1999) A Space-Time Finite Element Method for the Nonlinear Schrödinger Equation: The Continuous Galerkin Method. SIAM Journal on Numerical Analysis, 36, 1779-1807. https://doi.org/10.1137/s0036142997330111 |
[6] | Karakashian, O. and Makridakis, C. (2004) Convergence of a Continuous Galerkin Method with Mesh Modification for Nonlinear Wave Equations. Mathematics of Computation, 74, 85-103. https://doi.org/10.1090/s0025-5718-04-01654-0 |
[7] | Zhao, Z., Li, H. and Luo, Z. (2016) A New Space-Time Continuous Galerkin Method with Mesh Modification for Sobolev Equations. Journal of Mathematical Analysis and Applications, 440, 86-105. https://doi.org/10.1016/j.jmaa.2016.03.035 |
[8] | 候春英, 李宏. 半线性抛物方程的时空有限元方法[J]. 高校应用数学学报, 2008, 23(4): 459-470. |
[9] | Gao, G. and Wang, T. (2010) Cubic Superconvergent Finite Volume Element Method for One-Dimensional Elliptic and Parabolic Equations. Journal of Computational and Applied Mathematics, 233, 2285-2301. https://doi.org/10.1016/j.cam.2009.10.013 |
[10] | 肖宇宇, 何斯日古楞, 杨凯丽. 对流扩散方程的时间间断时空有限体积元法[J]. 高校应用数学学报, 2021, 36(2): 179-192. |
[11] | 肖宇宇, 何斯日古楞. 抛物型方程的高精度时空有限体积元方法[D]: [硕士学位论文]. 呼和浩特: 内蒙古大学, 2021. |
[12] | 李荣华, 陈仲英. 微分方程广义差分法[M]. 长春: 吉林大学出版社, 1994. |