%0 Journal Article %T 抛物方程的变网格连续时空有限体积元法
Variable Mesh Continuous Space-Time Finite Volume Element Method for Parabolic Equations %A 肖宇宇 %A 何斯日古楞 %A 陈娟 %J Advances in Applied Mathematics %P 148-163 %@ 2324-8009 %D 2025 %I Hans Publishing %R 10.12677/aam.2025.146308 %X 从三次Lagrange插值最佳应力点的理论出发,本文提出一种变网格连续时空有限体积元格式,旨在解决抛物方程数值求解问题。通过耦合Legendre-Lobatto节点的Lagrange插值多项式与Gauss积分准则,在时空非匹配网格剖分条件下严格证明了数值解的存在唯一性,并建立 L ( L 2 ) L ( H 1 ) 的最优阶误差估计理论。数值实验结果表明收敛数据与理论预测高度一致,验证了算法在非均匀网格环境中的计算优势与理论分析的有效性。
Based on the theoretical framework of cubic Lagrange interpolation with optimal stress nodes, this study develops a variable mesh continuous space-time finite volume element scheme to resolve numerical challenges in solving parabolic equations. By integrating Lagrange interpolation polynomials at Legendre-Lobatto nodes with Gauss quadrature rules, we rigorously prove the existence and uniqueness of numerical solutions under spacetime non-matching grid partitions. Optimal-order error estimates in L ( L 2 ) and L ( H 1 ) norms are theoretically established. Numerical experiments demonstrate excellent agreement between convergence rates and theoretical predictions, confirming the computational advantages of the proposed algorithm in non-uniform grid environments and the validity of theoretical analysis. %K 抛物方程, %K 变网格连续时空元, %K 有限体积元法, %K 误差估计
Parabolic Equations %K Variable Mesh Continuous Space-Time Elements %K Finite Volume Element Method %K Error Estimates %U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=117584