|
E-Commerce Letters 2025
结合投资者情绪运用LSTM-GAN模型预测股票
|
Abstract:
本研究运用股票市场历史数据以及投资者情绪数据,通过实证方法和对比分析方法,探讨了长短期记忆网络模型和对抗生成网络模型以及二者结合在股票收盘价预测中的效果。通过机器学习模型对这些数据进行分析,实验结果表明,混合模型相比于单独的长短期记忆网络模型和对抗生成网络模型误差更低,效果更好,并且模型中加入投资者情绪后,显著提高了股票预测的准确性和鲁棒性。
This study utilizes historical data of the stock market and investor sentiment data. Through empirical methods and comparative analysis methods, it explores the effects of the long short-term memory network model and the adversarial generative network model, as well as their combination, in the prediction of stock closing prices. These data were analyzed through the machine learning model. The experimental results show that the hybrid model has lower errors and better effects compared with the individual long short-term memory network model and the adversarial generative network model. Moreover, after adding investor sentiment to the model, the accuracy and robustness of stock prediction were significantly improved.
[1] | Alexander, S.S. (1961) Price Movements in Speculative Markets: Trends or Random Walks. Industrial Management Review of Mit, 2, 7-26. |
[2] | 张国文. 股票价格技术分析的若干指标简析[J]. 上海金融, 1992(7): 14-15. |
[3] | 张健, 陈勇, 夏罡, 等. 人工神经网络之股票预测[J]. 计算机工程, 1997(2): 52-55. |
[4] | 潘晓明, 吴建生. 基于支持向量机的进化神经网络集成股市模型[J]. 广西工学院学报, 2009, 20(2): 58-62+72. |
[5] | 张晶华, 甘宇健. 基于深度学习支持向量机的上证指数预测[J]. 统计与决策, 2019, 35(2): 176-178. |
[6] | 齐太威, 于文年. 基于LSTM的多指标股票预测[J]. 计算机与数字工程, 2024, 52(2): 337-342. |
[7] | 崔笑宁, 苏丹华, 尚维. 基于互联网新闻和时间卷积长短时记忆神经网络的股票指数预测研究[J]. 管理评论, 2024, 36(7): 113-127. |
[8] | 韩莹, 张栋, 孙凯强, 等. 结合长短时记忆网络和宽度学习的股票预测新模型研究[J]. 运筹与管理, 2023, 32(8): 187-192. |
[9] | 任君, 王建华, 王传美, 等. 基于ELSTM-L模型的股票预测系统[J]. 统计与决策, 2019, 35(21): 160-164. |
[10] | 马甜, 姜富伟, 唐国豪. 深度学习与中国股票市场因子投资——基于生成式对抗网络方法[J]. 经济学(季刊), 2022, 22(3): 819-842. |
[11] | 刘玉玲, 赵国龙, 邹自然, 等. 基于情感分析和GAN的股票价格预测方法[J]. 湖南大学学报(自然科学版), 2022, 49(10): 111-118. |
[12] | 王静. 基于多元经验模态分解生成对抗网络的金融时间序列预测[D]: [硕士学位论文]. 大连: 大连海事大学, 2020. |
[13] | 严冬梅, 李斌. 基于生成式对抗神经网络的股票预测研究[J]. 计算机工程与应用, 2022, 58(13): 185-194. |
[14] | 彭浩杰, 张宗强. 媒体情绪与股价崩盘风险——基于机器学习和文本分析的证据[J/OL]. 兰州财经大学学报, 1-19. http://kns.cnki.net/kcms/detail/62.1213.F.20240319.1731.038.html, 2025-01-07. |
[15] | Lee, W.Y., Jiang, C.X. and Indro, D.C. (2002) Stock Market Volatility, Excess Returns, and the Role of Investor Sentiment. Journal of Banking & Finance, 26, 2277-2299. https://doi.org/10.1016/s0378-4266(01)00202-3 |
[16] | Brown, G.W. and Cliff, M.T. (2004) Investor Sentiment and the Near-Term Stock Market. Journal of Empirical Finance, 11, 1-27. https://doi.org/10.1016/j.jempfin.2002.12.001 |
[17] | 崔文星, 曾繁华, 刘晓君. 经济政策不确定性、投资者情绪与股票收益的关联效应研究[J]. 统计与决策, 2025, 41(4): 150-155. |
[18] | 张卫国, 丘启君. 投资者情绪对基金业绩的影响研究——基于基金资金净流入视角[J]. 投资研究, 2024, 43(2): 54-74. |
[19] | Antweiler, W. and Frank, M.Z. (2004) Is All That Talk Just Noise? The Information Content of Internet Stock Message Boards. The Journal of Finance, 59, 1259-1294. https://doi.org/10.1111/j.1540-6261.2004.00662.x |