全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

含分布时滞和Allee效应的单物种模型的动力学分析
Dynamical Analysis of a Single Species Model with Distributed Delay and Allee Effect

DOI: 10.12677/pm.2025.155178, PP. 287-297

Keywords: 分布时滞,Allee效应,极限环,食饵–捕食系统
Distribution Time Delay
, Allee Effect, Limit Cycle, Predator-Prey Model

Full-Text   Cite this paper   Add to My Lib

Abstract:

生物数学作为生物学与数学的交叉学科,旨在挖掘数学工具在生命科学中的应用潜力,并通过构建数学模型解决生物学问题。基于微分方程的单种群动态模型研究是该领域的重要方向之一。在此基础上,我们结合常微分方程理论、定性分析和非线性系统技术,设计了一种包含分布时滞和Allee效应的Logistic型种群模型。通过对系统结构与动力学行为的深入分析,我们阐明了模型在边界稳定状态下的规律,并给出了平衡状态及其维持条件。
Biomathematics, as an interdisciplinary field combining biology and mathematics, aims to explore the potential of mathematical tools in the life sciences and solve biological problems by constructing mathematical models. The study of single-population dynamic models based on differential equations is one of the key directions in this field. Building on this foundation, we have developed a Logistic-type population model incorporating distributed delays and the Allee effect by integrating the theory of ordinary differential equations, qualitative analysis, and nonlinear system techniques. Through an in-depth analysis of the system’s structure and dynamic behavior, we elucidate the patterns of the model under boundary stability and provide the equilibrium states along with their maintenance conditions.

References

[1]  Volterra, V. (1934) Remarques sur la note de M. Régnier et Mlle. Lambin (tude dun cas dantagonisme microbien). Comptes Rendus de Academie des Sciences Serie C, 199, 1684-1686.
[2]  Kang, Y. and Udiani, O. (2014) Dynamics of a Single Species Evolutionary Model with Allee Effects. Journal of Mathematical Analysis and Applications, 418, 492-515.
https://doi.org/10.1016/j.jmaa.2014.03.083
[3]  付胜男. 两类具有分布时滞和非线性收获的单种群模型的研究[D]: [硕士学位论文]. 恩施: 湖北民族大学, 2019.
[4]  方侃, 陈晓英. 具有Allee效应单种群反馈控制模型的动力学分析[J]. 闽南师范大学学报, 自然科学版, 2021, 34(3): 39-45.
[5]  陈贤礼. 具有Allee效应及非线性扰动的随机单种群模型的平稳分布及灭绝性[J]. 系统科学与数学, 2019, 39(12): 2093-2104.
[6]  Wang, J. and Wang, K. (2004) Optimal Control of Harvesting for Single Population. Applied Mathematics and Computation, 156, 235-247.
https://doi.org/10.1016/j.amc.2003.07.019
[7]  马知恩, 周义仓. 常微分方程定性与稳定性方法[M]. 北京: 科学出版社, 2001.
[8]  张芷芬. 微分方程定性理论[M]. 北京: 科学出版社, 1985.
[9]  Li, X. and Huang, S. (2019) Stability and Bifurcation for a Single‐Species Model with Delay Weak Kernel and Constant Rate Harvesting. Complexity, 2019, Article ID: 1810385.
https://doi.org/10.1155/2019/1810385

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133