%0 Journal Article %T 含分布时滞和Allee效应的单物种模型的动力学分析
Dynamical Analysis of a Single Species Model with Distributed Delay and Allee Effect %A 龙驰宇 %J Pure Mathematics %P 287-297 %@ 2160-7605 %D 2025 %I Hans Publishing %R 10.12677/pm.2025.155178 %X 生物数学作为生物学与数学的交叉学科,旨在挖掘数学工具在生命科学中的应用潜力,并通过构建数学模型解决生物学问题。基于微分方程的单种群动态模型研究是该领域的重要方向之一。在此基础上,我们结合常微分方程理论、定性分析和非线性系统技术,设计了一种包含分布时滞和Allee效应的Logistic型种群模型。通过对系统结构与动力学行为的深入分析,我们阐明了模型在边界稳定状态下的规律,并给出了平衡状态及其维持条件。
Biomathematics, as an interdisciplinary field combining biology and mathematics, aims to explore the potential of mathematical tools in the life sciences and solve biological problems by constructing mathematical models. The study of single-population dynamic models based on differential equations is one of the key directions in this field. Building on this foundation, we have developed a Logistic-type population model incorporating distributed delays and the Allee effect by integrating the theory of ordinary differential equations, qualitative analysis, and nonlinear system techniques. Through an in-depth analysis of the system’s structure and dynamic behavior, we elucidate the patterns of the model under boundary stability and provide the equilibrium states along with their maintenance conditions. %K 分布时滞, %K Allee效应, %K 极限环, %K 食饵– %K 捕食系统
Distribution Time Delay %K Allee Effect %K Limit Cycle %K Predator-Prey Model %U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=116187