全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于深度学习的LSTM模型在股票价格预测中的应用
Application of LSTM Model Based on Deep Learning in Stock Price Prediction

DOI: 10.12677/ecl.2025.1451595, PP. 2864-2874

Keywords: LSTM模型,RNN模型,股票价格预测,时间序列分析
LSTM Model
, RNN Model, Stock Price Prediction, Time Series Analysis

Full-Text   Cite this paper   Add to My Lib

Abstract:

股票价格波动与投资者利益、宏观经济稳定密切相关,精准预测股票价格备受关注。传统的预测方法,如循环神经网络(RNN)模型在预测非线性、非正态和时间相关性的股票数据时存在长期记忆能力较差、效率低下等问题。长短期记忆网络(LSTM)模型作为改进的循环神经网络,能更好地处理长时间跨度上的相关性,提高预测的准确性和稳定性。本文以上证综指为研究对象,将LSTM模型与RNN模型进行对比实验,评估分析模型性能,结果表明使用LSTM模型对股价的预测误差小,效果佳,在股票价格预测领域具有一定的应用价值。
The fluctuations of stock prices are closely related to the interests of investors and the stability of the macro-economy. Precise prediction of stock prices has attracted much attention. Traditional prediction methods, such as the Recurrent Neural Network (RNN) model, have problems like poor long-term memory ability and low efficiency when predicting stock data that is nonlinear, non-normal, and has time correlations. As an improved recurrent neural network, the Long Short-Term Memory (LSTM) model can better handle the correlations over a long time span, improving the accuracy and stability of predictions. This paper takes the Shanghai Composite Index as the research object, conducts a comparative experiment between the LSTM model and the RNN model, and evaluates and analyzes the performance of the models. The results show that the predictions of stock prices using the LSTM model have small errors and good effects, indicating that the LSTM model has certain application value in the field of stock price prediction.

References

[1]  Ko, C. and Chang, H. (2021) LSTM-Based Sentiment Analysis for Stock Price Forecast. PeerJ Computer Science, 7, e408.
https://doi.org/10.7717/peerj-cs.408
[2]  张贵勇. 改进的卷积神经网络在金融预测中的应用研究[D]: [硕士学位论文]. 郑州: 郑州大学, 2016.
[3]  Metawa, N., Akour, I., Tarek, Z. and Elhoseny, M. (2023) Improved Optimization Model for Forecasting Stock Directions (FSD). Economic Research-Ekonomska Istraživanja, 36, Article ID: 2223263.
https://doi.org/10.1080/1331677x.2023.2223263
[4]  孙瑞奇. 基于LSTM神经网络的美股股指价格趋势预测模型的研究[D]: [硕士学位论文]. 北京: 首都经济贸易大学, 2016.
[5]  张杰. 基于LSTM的股票预测实证分析[D]: [硕士学位论文]. 济南: 山东大学, 2020.
[6]  Bhandari, H.N., Rimal, B., Pokhrel, N.R., Rimal, R., Dahal, K.R. and Khatri, R.K.C. (2022) Predicting Stock Market Index Using LSTM. Machine Learning with Applications, 9, Article ID: 100320.
https://doi.org/10.1016/j.mlwa.2022.100320
[7]  Giang Thi Thu, H., Nguyen Thanh, T. and Le Quy, T. (2022) Dynamic Sliding Window and Neighborhood LSTM-Based Model for Stock Price Prediction. SN Computer Science, 3, Article No. 256.
https://doi.org/10.1007/s42979-022-01158-1
[8]  管健. 基于RNN-CNN模型股票价格预测方法研究[D]: [硕士学位论文]. 南京: 南京信息工程大学, 2023.
[9]  董玲. 基于深度学习的股票价格预测研究[D]: [硕士学位论文]. 烟台: 山东工商学院, 2023.
[10]  刘会滔. 基于二次分解和多源数据融合的股票价格预测研究[D]: [硕士学位论文]. 南京: 南京信息工程大学, 2024.
[11]  马一琳. 基于深度神经网络的股价预测及投资组合研究[D]: [博士学位论文]. 南京: 东南大学, 2020.
[12]  杨学丽. 基于LSTM的我国碳排放权交易市场价格动态预测研究[D]: [硕士学位论文]. 长春: 吉林大学, 2022.
[13]  牟元祥. 基于深度学习的自然场景文本识别算法研究与应用[D]: [硕士学位论文]. 成都: 电子科技大学, 2022.
[14]  Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., van den Driessche, G., et al. (2016) Mastering the Game of Go with Deep Neural Networks and Tree Search. Nature, 529, 484-489.
https://doi.org/10.1038/nature16961

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133