全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于CNN-LSTM-Attention的国债收益率预测研究
Research on the Prediction of Treasury Bond Yield Based on CNN-LSTM-Attention Model

DOI: 10.12677/ecl.2025.1451583, PP. 2734-2746

Keywords: 国债收益率预测,LSTM长短时记忆网络,CNN卷积神经网络,注意力机制
Treasury Bond Yield Prediction
, LSTM Long-Term and Short-Term Memory Network, CNN Convolutional Neural Network, Attention Mechanism

Full-Text   Cite this paper   Add to My Lib

Abstract:

国债是利率债的一种重要形式,其到期收益率在经济金融体系中扮演着关键的参考角色。当前,市场对国债收益率的预测精度提出了更高的要求,这不仅体现在对宏观经济趋势的判断上,也体现在微观利率债交易中。然而,宏观经济分析涉及的指标众多且错综复杂,指标间的领先滞后关系也在不断变化,这使得传统的定性分析和定量分析方法在预测的精确度和准确性方面存在一定的局限性。鉴于此,本文采用了一种新型的深度学习预测模型来预测长期国债的收益率,并将其与基础的LSTM模型进行比较。该模型融合了卷积神经网络(CNN)、长短期记忆网络(LSTM)和注意力机制(AM)。首先,通过CNN对输入数据进行特征提取;然后,LSTM利用这些特征数据来预测国债次日的收益率;最后,借助调幅法来捕捉不同时间特征状态对国债收益率的影响,以提升预测的精度。根据机器学习时序预测技术的研究成果,集成CNN-LSTM-Attention模型相比基础LSTM模型能得到更好的预测效果,本文对此进行了验证,得到的结果与此相符。
Treasury bond is an important form of interest rate debt, and its yield to maturity plays a key reference role in the economic and financial system. At present, the market has put forward higher requirements for the prediction accuracy of treasury bond yield, which is not only reflected in the judgment of macroeconomic trends, but also reflected in the trading of micro interest rate bonds. However, macroeconomic analysis involves numerous and complex indicators, and the leading and lagging relationships between indicators are constantly changing, which limits the accuracy and precision of traditional qualitative and quantitative analysis methods in forecasting. In view of this, this paper adopts a new deep learning prediction model to predict the yield of long-term treasury bond, and compares it with the basic LSTM model. This model integrates Convolutional Neural Network (CNN), Long Short Term Memory Network (LSTM), and Attention Mechanism (AM). Firstly, feature extraction is performed on the input data using CNN; Then, LSTM uses these characteristic data to predict the yield of treasury bond the next day; Finally, the amplitude modulation method is used to capture the impact of different time characteristic states on treasury bond yield, so as to improve the accuracy of prediction. According to the research results of machine learning time series prediction technology, the integrated CNN-LSTM-Attention model can achieve better prediction performance compared to the basic LSTM model. This paper verifies this and the results obtained are consistent with this.

References

[1]  杨华. 关于国债收益率曲线作为定价基准的分析及建议[J]. 财务与会计, 2022(10): 85-86.
[2]  陈哲. 宏观经济变量预测利率期限结构变动的探讨[J]. 商业时代, 2008(32): 68-69.
[3]  帅昭文, 沈根祥, 张碧馨. 宏观经济对国债利率期限结构的影响研究[J]. 统计与决策, 2017(17): 159-164.
[4]  杨婉茜, 成力为. 基于贝叶斯向量自回归的中国国债收益率预测[J]. 统计研究, 2015, 32(8): 69-76.
[5]  谈正达, 霍良安. 无套利Nelson-Siegel模型在中国国债市场的实证分析[J]. 中国管理科学, 2012, 20(6): 18-27.
[6]  赵晶, 张洋, 丁志国. 利率期限结构特征的拟合与预测[J]. 统计研究, 2015, 32(2): 83-89.
[7]  Fama, E.F. and Bliss, R.R. (1987) The Information in the Long-Maturity Rates. American Economic Review, 77, 680-692.
[8]  Brandt, M.W. and Wang, K.Q. (2003) Time-Varying Risk Aversion and Unexpected Inflation. Journal of Monetary Economics, 50, 1457-1498.
https://doi.org/10.1016/j.jmoneco.2003.08.001
[9]  闫红蕾, 张自力. 利率期限结构预测、国债定价及国债组合管理[J]. 统计研究, 2018, 35(3): 23-37.
[10]  宋鹏, 张淼. 国债收益率预测的VAR-LSTM框架[J]. 统计与决策, 2021, 37(5): 148-152.
[11]  王雷, 闫红蕾, 张自力. 收益率曲面预测及其在信用债投资组合管理中的应用[J]. 统计研究, 2021, 38(4): 145-160.
[12]  康书隆, 王志强. 中国国债利率期限结构的风险特征及其内含信息研究[J]. 世界经济, 2010, 33(7): 121-143.
[13]  袁伟鹏, 张翼, 张飞, 等. 新常态下PPI与十年期国债收益率的动态关系研究[J]. 工程数学学报, 2021, 38(6): 809-821.
[14]  魏雪梅. 国债收益率影响因素分析及走势预测[J]. 债券, 2013(9): 52-57.
[15]  李湛, 唐晋荣. 股市异常波动下的股债联动关系——基于事件研究法的分析[J]. 证券市场导报, 2017(12): 24-29, 37.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133