全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

抗抑郁药物的现状与新靶点的探索
The Current Status of Antidepressant Drugs and the Exploration of New Targets

DOI: 10.12677/hjmce.2025.132021, PP. 194-209

Keywords: 谷氨酸系统,神经肽系统,内源性大麻素系统,炎症标志物,离子通道
Glutamate System
, Neuropeptide System, Endocannabinoid System, Inflammatory Markers, Ion Channel

Full-Text   Cite this paper   Add to My Lib

Abstract:

抑郁症是一种常见的病因复杂、影响着全球数百万人的精神障碍,药物治疗是主要的治疗方式。但当前的抗抑郁药多基于“单胺神经递质假说”开发,如SSRI和SNRI。这些药物通过调节5-HT和NE的浓度来缓解抑郁症状。然而,这些药物起效慢(通常需2~3周)且存在胃肠道不适、性功能障碍等副作用,长期用药后存在复发风险等。此外,约20%~30%的患者对这些药物无显著反应。为了解决现有治疗药物的局限性,近年来开发了多种基于新型的抗抑郁靶点的药物,如谷氨酸系统中的NMDA受体拮抗剂氯胺酮,已被证明对难治性抑郁症有快速起效的效果。同时,针对其他新型靶点如AMPA受体、mGluR受体、神经肽系统、离子通道和炎症标志物等的新药也显示出良好的治疗前景。这些新型药物不仅能改善情绪,还可能提高认知功能和神经可塑性。本文对这些研究进展进行了简要但系统的综述。
Depression, a prevalent mental disorder with multifaceted origins, impacts millions globally. Pharmacological interventions form the primary treatment approach. However, most current antidepressants are grounded in the “monoamine neurotransmitter hypothesis,” including SSRIs and SNRIs, which alleviate depressive symptoms by modulating 5-HT and NE levels. Despite their efficacy, these medications exhibit a delayed onset of action (usually 2~3 weeks) and can cause side effects like gastrointestinal issues and sexual dysfunction. Moreover, there is a risk of relapse following prolonged use, and about 20%~30% of patients do not respond significantly to these treatments. To address these limitations, recent years have seen the development of novel antidepressants targeting different mechanisms. For example, ketamine, an NMDA receptor antagonist within the glutamate system, has shown rapid efficacy in treating resistant depression. Concurrently, emerging drugs that target other innovative pathways, such as AMPA receptors, mGluR receptors, neuropeptide systems, ion channel and inflammatory markers, also hold promising therapeutic potential. These new agents not only enhance mood but may also improve cognitive function and neuroplasticity. This paper offers a concise yet comprehensive overview of these advancements in research.

References

[1]  WHO (2023) Depressive Disorder (Depression).
https://www.who.int/news-room/fact-sheets/detail/depression
[2]  Bao, H. (2023) Progress in Etiology and Diagnosis of Depression. Advances in Clinical Medicine, 13, 5641-5645.
https://doi.org/10.12677/acm.2023.134797
[3]  O’Leary, K. (2021) Global Increase in Depression and Anxiety. Nature Medicine.
https://doi.org/10.1038/d41591-021-00064-y
[4]  Mrazek, D.A., Hornberger, J.C., Altar, C.A. and Degtiar, I. (2014) A Review of the Clinical, Economic, and Societal Burden of Treatment-Resistant Depression: 1996-2013. Psychiatric Services, 65, 977-987.
https://doi.org/10.1176/appi.ps.201300059
[5]  Hirschfeld, R.M. (2000) History and Evolution of the Monoamine Hypothesis of Depression. The Journal of Clinical Psychiatry, 61, 4-6.
[6]  Krishnan, V. and Nestler, E.J. (2008) The Molecular Neurobiology of Depression. Nature, 455, 894-902.
https://doi.org/10.1038/nature07455
[7]  Han, Y., Khodr, C.E., Sapru, M.K., Pedapati, J. and Bohn, M.C. (2011) A MicroRNA Embedded AAV Alpha-Synuclein Gene Silencing Vector for Dopaminergic Neurons. Brain Research, 1386, 15-24.
https://doi.org/10.1016/j.brainres.2011.02.041
[8]  Palazidou, E. (2012) The Neurobiology of Depression. British Medical Bulletin, 101, 127-145.
https://doi.org/10.1093/bmb/lds004
[9]  Duman, R.S., Sanacora, G. and Krystal, J.H. (2019) Altered Connectivity in Depression: GABA and Glutamate Neurotransmitter Deficits and Reversal by Novel Treatments. Neuron, 102, 75-90.
https://doi.org/10.1016/j.neuron.2019.03.013
[10]  Sarawagi, A., Soni, N.D. and Patel, A.B. (2021) Glutamate and GABA Homeostasis and Neurometabolism in Major Depressive Disorder. Frontiers in Psychiatry, 12, Article 637863.
https://doi.org/10.3389/fpsyt.2021.637863
[11]  Krystal, J.H., Abdallah, C.G., Sanacora, G., Charney, D.S. and Duman, R.S. (2019) Ketamine: A Paradigm Shift for Depression Research and Treatment. Neuron, 101, 774-778.
https://doi.org/10.1016/j.neuron.2019.02.005
[12]  Murrough, J.W., Abdallah, C.G. and Mathew, S.J. (2017) Targeting Glutamate Signalling in Depression: Progress and Prospects. Nature Reviews Drug Discovery, 16, 472-486.
https://doi.org/10.1038/nrd.2017.16
[13]  Wong, D., Atiya, S., Fogarty, J., Montero-Odasso, M., Pasternak, S.H., Brymer, C., et al. (2020) Reduced Hippocampal Glutamate and Posterior Cingulate N-Acetyl Aspartate in Mild Cognitive Impairment and Alzheimer’s Disease Is Associated with Episodic Memory Performance and White Matter Integrity in the Cingulum: A Pilot Study. Journal of Alzheimer’s Disease, 73, 1385-1405.
https://doi.org/10.3233/jad-190773
[14]  Abdallah, C.G., Jiang, L., De Feyter, H.M., Fasula, M., Krystal, J.H., Rothman, D.L., et al. (2014) Glutamate Metabolism in Major Depressive Disorder. American Journal of Psychiatry, 171, 1320-1327.
https://doi.org/10.1176/appi.ajp.2014.14010067
[15]  Abdallah, C.G., Sanacora, G., Duman, R.S. and Krystal, J.H. (2018) The Neurobiology of Depression, Ketamine and Rapid-Acting Antidepressants: Is It Glutamate Inhibition or Activation? Pharmacology & Therapeutics, 190, 148-158.
https://doi.org/10.1016/j.pharmthera.2018.05.010
[16]  Kavalali, E.T. and Monteggia, L.M. (2012) Synaptic Mechanisms Underlying Rapid Antidepressant Action of Ketamine. American Journal of Psychiatry, 169, 1150-1156.
https://doi.org/10.1176/appi.ajp.2012.12040531
[17]  Zanos, P. and Gould, T.D. (2018) Mechanisms of Ketamine Action as an Antidepressant. Molecular Psychiatry, 23, 801-811.
https://doi.org/10.1038/mp.2017.255
[18]  Wang, Y., Wang, X., Lei, L., Guo, Z., Kan, F., Hu, D., et al. (2023) A Systematic Review and Meta-Analysis of the Efficacy of Ketamine and Esketamine on Suicidal Ideation in Treatment-Resistant Depression. European Journal of Clinical Pharmacology, 80, 287-296.
https://doi.org/10.1007/s00228-023-03605-1
[19]  Rodrigues, H., Figueira, I., Lopes, A., Gonçalves, R., Mendlowicz, M.V., Coutinho, E.S.F., et al. (2014) Does D-Cycloserine Enhance Exposure Therapy for Anxiety Disorders in Humans? a Meta-analysis. PLOS ONE, 9, e93519.
https://doi.org/10.1371/journal.pone.0093519
[20]  Jiménez-Sánchez, L., Castañé, A., Pérez-Caballero, L., Grifoll, M., López-Gil, X., Campa, L., et al. (2015) Activation of AMPA Receptors Mediates the Antidepressant Action of Deep Brain Stimulation of the Infralimbic Prefrontal Cortex. Cerebral Cortex, 26, 2778-2789.
https://doi.org/10.1093/cercor/bhv133
[21]  Lynch, G. (2004) AMPA Receptor Modulators as Cognitive Enhancers. Current Opinion in Pharmacology, 4, 4-11.
https://doi.org/10.1016/j.coph.2003.09.009
[22]  Kadriu, B., Musazzi, L., Johnston, J.N., Kalynchuk, L.E., Caruncho, H.J., Popoli, M., et al. (2021) Positive AMPA Receptor Modulation in the Treatment of Neuropsychiatric Disorders: A Long and Winding Road. Drug Discovery Today, 26, 2816-2838.
https://doi.org/10.1016/j.drudis.2021.07.027
[23]  Vaidya, A., Jain, S., Jain, A., Agrawal, A., Kashaw, S., Jain, S., et al. (2013) Metabotropic Glutamate Receptors: A Review on Prospectives and Therapeutic Aspects. Mini-Reviews in Medicinal Chemistry, 13, 1967-1981.
https://doi.org/10.2174/1389557511313130010
[24]  McGahon, B. and Lynch, M.A. (1996) The Synergism between ACPD and Arachidonic Acid on Glutamate Release in Hippocampus Is Age-Dependent. European Journal of Pharmacology, 309, 323-326.
https://doi.org/10.1016/0014-2999(96)00463-3
[25]  Izumi, Y., Zarrin, A.R. and Zorumski, C.F. (2000) Arachidonic Acid Rescues Hippocampal Long-Term Potentiation Blocked by Group I Metabotropic Glutamate Receptor Antagonists. Neuroscience, 100, 485-491.
https://doi.org/10.1016/s0306-4522(00)00301-8
[26]  Barnes, S.A., Sheffler, D.J., Semenova, S., Cosford, N.D.P. and Bespalov, A. (2018) Metabotropic Glutamate Receptor 5 as a Target for the Treatment of Depression and Smoking: Robust Preclinical Data but Inconclusive Clinical Efficacy. Biological Psychiatry, 83, 955-962.
https://doi.org/10.1016/j.biopsych.2018.03.001
[27]  Luscher, B., Maguire, J.L., Rudolph, U. and Sibille, E. (2023) GABAA Receptors as Targets for Treating Affective and Cognitive Symptoms of Depression. Trends in Pharmacological Sciences, 44, 586-600.
https://doi.org/10.1016/j.tips.2023.06.009
[28]  Jacob, T.C., Moss, S.J. and Jurd, R. (2008) GABAA Receptor Trafficking and Its Role in the Dynamic Modulation of Neuronal Inhibition. Nature Reviews Neuroscience, 9, 331-343.
https://doi.org/10.1038/nrn2370
[29]  Woodward, E., Rangel-Barajas, C., Ringland, A., Logrip, M.L. and Coutellier, L. (2023) Sex-Specific Timelines for Adaptations of Prefrontal Parvalbumin Neurons in Response to Stress and Changes in Anxiety-and Depressive-Like Behaviors. Eneuro, 10.
https://doi.org/10.1523/eneuro.0300-22.2023
[30]  Suthoff, E., Kosinski, M., Arnaud, A., Hodgkins, P., Gunduz-Bruce, H., Lasser, R., et al. (2022) Patient-Reported Health-Related Quality of Life from a Randomized, Placebo-Controlled Phase 2 Trial of Zuranolone in Adults with Major Depressive Disorder. Journal of Affective Disorders, 308, 19-26.
https://doi.org/10.1016/j.jad.2022.03.068
[31]  Gunduz-Bruce, H., Silber, C., Kaul, I., Rothschild, A.J., Riesenberg, R., Sankoh, A.J., et al. (2019) Trial of SAGE-217 in Patients with Major Depressive Disorder. New England Journal of Medicine, 381, 903-911.
https://doi.org/10.1056/nejmoa1815981
[32]  Dichtel, L.E., Nyer, M., Dording, C., Fisher, L.B., Cusin, C., Shapero, B.G., et al. (2020) Effects of Open-Label, Adjunctive Ganaxolone on Persistent Depression Despite Adequate Antidepressant Treatment in Postmenopausal Women. The Journal of Clinical Psychiatry, 81, 19m12887.
https://doi.org/10.4088/jcp.19m12887
[33]  Bale, T.L. and Vale, W.W. (2004) CRF and CRF Receptors: Role in Stress Responsivity and Other Behaviors. Annual Review of Pharmacology and Toxicology, 44, 525-557.
https://doi.org/10.1146/annurev.pharmtox.44.101802.121410
[34]  Zorrilla, E.P. and Koob, G.F. (2004) The Therapeutic Potential of CRF1 Antagonists for Anxiety. Expert Opinion on Investigational Drugs, 13, 799-828.
https://doi.org/10.1517/13543784.13.7.799
[35]  Furman, B.L. (2017) Antalarmin. In: Reference Module in Biomedical Sciences, Elsevier.
https://doi.org/10.1016/b978-0-12-801238-3.96834-x
[36]  Lee, M.R., Rio, D., Kwako, L., George, D.T., Heilig, M. and Momenan, R. (2022) Corticotropin-Releasing Factor Receptor 1 (CRF1) Antagonism in Patients with Alcohol Use Disorder and High Anxiety Levels: Effect on Neural Response during Trier Social Stress Test Video Feedback. Neuropsychopharmacology, 48, 816-820.
https://doi.org/10.1038/s41386-022-01521-z
[37]  Spierling, S.R. and Zorrilla, E.P. (2017) Don’t Stress about CRF: Assessing the Translational Failures of Crf1antagonists. Psychopharmacology, 234, 1467-1481.
https://doi.org/10.1007/s00213-017-4556-2
[38]  Domin, H. and Śmiałowska, M. (2024) The Diverse Role of Corticotropin-Releasing Factor (CRF) and Its CRF1 and CRF2 Receptors under Pathophysiological Conditions: Insights into Stress/anxiety, Depression, and Brain Injury Processes. Neuroscience & Biobehavioral Reviews, 163, Article 105748.
https://doi.org/10.1016/j.neubiorev.2024.105748
[39]  Sah, R. and Geracioti, T.D. (2012) Neuropeptide Y and Posttraumatic Stress Disorder. Molecular Psychiatry, 18, 646-655.
https://doi.org/10.1038/mp.2012.101
[40]  Enman, N.M., Sabban, E.L., McGonigle, P. and Van Bockstaele, E.J. (2015) Targeting the Neuropeptide Y System in Stress-Related Psychiatric Disorders. Neurobiology of Stress, 1, 33-43.
https://doi.org/10.1016/j.ynstr.2014.09.007
[41]  Nahvi, R.J., Tanelian, A., Nwokafor, C., Hollander, C.M., Peacock, L. and Sabban, E.L. (2021) Intranasal Neuropeptide Y as a Potential Therapeutic for Depressive Behavior in the Rodent Single Prolonged Stress Model in Females. Frontiers in Behavioral Neuroscience, 15, Article 705579.
https://doi.org/10.3389/fnbeh.2021.705579
[42]  Reichmann, F. and Holzer, P. (2016) Neuropeptide Y: A Stressful Review. Neuropeptides, 55, 99-109.
https://doi.org/10.1016/j.npep.2015.09.008
[43]  Kask, A., Harro, J., von Hörsten, S., Redrobe, J.P., Dumont, Y. and Quirion, R. (2002) The Neurocircuitry and Receptor Subtypes Mediating Anxiolytic-Like Effects of Neuropeptide Y. Neuroscience & Biobehavioral Reviews, 26, 259-283.
https://doi.org/10.1016/s0149-7634(01)00066-5
[44]  Borroto-Escuela, D., Serrano-Castro, P., Sánchez-Pérez, J.A., Barbancho-Fernández, M.A., Fuxe, K. and Narváez, M. (2024) Enhanced Neuronal Survival and BDNF Elevation via Long-Term Co-Activation of Galanin 2 (GALR2) and Neuropeptide Y1 Receptors (NPY1R): Potential Therapeutic Targets for Major Depressive Disorder. Expert Opinion on Therapeutic Targets, 28, 295-308.
https://doi.org/10.1080/14728222.2024.2342517
[45]  Paudel, P., Ross, S. and Li, X. (2022) Molecular Targets of Cannabinoids Associated with Depression. Current Medicinal Chemistry, 29, 1827-1850.
https://doi.org/10.2174/0929867328666210623144658
[46]  Romero-Sanchiz, P., Nogueira-Arjona, R., Pastor, A., Araos, P., Serrano, A., Boronat, A., et al. (2019) Plasma Concentrations of Oleoylethanolamide in a Primary Care Sample of Depressed Patients Are Increased in Those Treated with Selective Serotonin Reuptake Inhibitor-Type Antidepressants. Neuropharmacology, 149, 212-220.
https://doi.org/10.1016/j.neuropharm.2019.02.026
[47]  Bambico, F.R. and Gobbi, G. (2008) The Cannabinoid CB1 Receptor and the Endocannabinoid Anandamide: Possible Antidepressant Targets. Expert Opinion on Therapeutic Targets, 12, 1347-1366.
https://doi.org/10.1517/14728222.12.11.1347
[48]  Lee, H., Choi, E. and Pak, C. (2009) The Current Status and Future Perspectives of Studies of Cannabinoid Receptor 1 Antagonists as Anti-Obesity Agents. Current Topics in Medicinal Chemistry, 9, 482-503.
https://doi.org/10.2174/156802609788897844
[49]  Kathuria, S., Gaetani, S., Fegley, D., Valiño, F., Duranti, A., Tontini, A., et al. (2002) Modulation of Anxiety through Blockade of Anandamide Hydrolysis. Nature Medicine, 9, 76-81.
https://doi.org/10.1038/nm803
[50]  Long, J.Z. and Cravatt, B.F. (2011) The Metabolic Serine Hydrolases and Their Functions in Mammalian Physiology and Disease. Chemical Reviews, 111, 6022-6063.
https://doi.org/10.1021/cr200075y
[51]  Ahn, K., McKinney, M.K. and Cravatt, B.F. (2008) Enzymatic Pathways That Regulate Endocannabinoid Signaling in the Nervous System. Chemical Reviews, 108, 1687-1707.
https://doi.org/10.1021/cr0782067
[52]  Miller, A.H. and Raison, C.L. (2015) The Role of Inflammation in Depression: From Evolutionary Imperative to Modern Treatment Target. Nature Reviews Immunology, 16, 22-34.
https://doi.org/10.1038/nri.2015.5
[53]  Felger, J.C. and Miller, A.H. (2012) Cytokine Effects on the Basal Ganglia and Dopamine Function: The Subcortical Source of Inflammatory Malaise. Frontiers in Neuroendocrinology, 33, 315-327.
https://doi.org/10.1016/j.yfrne.2012.09.003
[54]  Pariante, C.M. (2017) Why Are Depressed Patients Inflamed? A Reflection on 20 Years of Research on Depression, Glucocorticoid Resistance and Inflammation. European Neuropsychopharmacology, 27, 554-559.
https://doi.org/10.1016/j.euroneuro.2017.04.001
[55]  Zhang, J., Yao, W. and Hashimoto, K. (2016) Brain-Derived Neurotrophic Factor (BDNF)-TrkB Signaling in Inflammation-Related Depression and Potential Therapeutic Targets. Current Neuropharmacology, 14, 721-731.
https://doi.org/10.2174/1570159x14666160119094646
[56]  Strawbridge, R., Arnone, D., Danese, A., Papadopoulos, A., Herane Vives, A. and Cleare, A.J. (2015) Inflammation and Clinical Response to Treatment in Depression: A Meta-analysis. European Neuropsychopharmacology, 25, 1532-1543.
https://doi.org/10.1016/j.euroneuro.2015.06.007
[57]  Köhler, O., Benros, M.E., Nordentoft, M., Farkouh, M.E., Iyengar, R.L., Mors, O., et al. (2014) Effect of Anti-Inflammatory Treatment on Depression, Depressive Symptoms, and Adverse Effects: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. JAMA Psychiatry, 71, 1381-1391.
https://doi.org/10.1001/jamapsychiatry.2014.1611
[58]  Dantzer, R. and Walker, A.K. (2014) Is There a Role for Glutamate-Mediated Excitotoxicity in Inflammation-Induced Depression? Journal of Neural Transmission, 121, 925-932.
https://doi.org/10.1007/s00702-014-1187-1
[59]  Miller, A.H., Haroon, E., Raison, C.L. and Felger, J.C. (2013) Cytokine Targets in the Brain: Impact on Neurotransmitters and Neurocircuits. Depression and Anxiety, 30, 297-306.
https://doi.org/10.1002/da.22084
[60]  Raison, C.L., Rutherford, R.E., Woolwine, B.J., Shuo, C., Schettler, P., Drake, D.F., et al. (2013) A Randomized Controlled Trial of the Tumor Necrosis Factor Antagonist Infliximab for Treatment-Resistant Depression: The Role of Baseline Inflammatory Biomarkers. JAMA Psychiatry, 70, 31-41.
https://doi.org/10.1001/2013.jamapsychiatry.4
[61]  Na, K., Jung, H. and Kim, Y. (2014) The Role of Pro-Inflammatory Cytokines in the Neuroinflammation and Neurogenesis of Schizophrenia. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 48, 277-286.
https://doi.org/10.1016/j.pnpbp.2012.10.022
[62]  Clemente, J.C., Ursell, L.K., Parfrey, L.W. and Knight, R. (2012) The Impact of the Gut Microbiota on Human Health: An Integrative View. Cell, 148, 1258-1270.
https://doi.org/10.1016/j.cell.2012.01.035
[63]  Castro-Mejía, J.L., Muhammed, M.K., Kot, W., Neve, H., Franz, C.M.A.P., Hansen, L.H., et al. (2015) Optimizing Protocols for Extraction of Bacteriophages Prior to Metagenomic Analyses of Phage Communities in the Human Gut. Microbiome, 3, Article No. 64.
https://doi.org/10.1186/s40168-015-0131-4
[64]  Cryan, J.F., O’Riordan, K.J., Cowan, C.S.M., Sandhu, K.V., Bastiaanssen, T.F.S., Boehme, M., et al. (2019) The Microbiota-Gut-Brain Axis. Physiological Reviews, 99, 1877-2013.
https://doi.org/10.1152/physrev.00018.2018
[65]  Zheng, P., Yang, J., Li, Y., Wu, J., Liang, W., Yin, B., et al. (2020) Gut Microbial Signatures Can Discriminate Unipolar from Bipolar Depression. Advanced Science, 7, Article 1902862.
https://doi.org/10.1002/advs.201902862
[66]  Kelly, J.R., Borre, Y., O' Brien, C., Patterson, E., El Aidy, S., Deane, J., et al. (2016) Transferring the Blues: Depression-Associated Gut Microbiota Induces Neurobehavioural Changes in the Rat. Journal of Psychiatric Research, 82, 109-118.
https://doi.org/10.1016/j.jpsychires.2016.07.019
[67]  Yang, J., Zheng, P., Li, Y., Wu, J., Tan, X., Zhou, J., et al. (2020) Landscapes of Bacterial and Metabolic Signatures and Their Interaction in Major Depressive Disorders. Science Advances, 6, eaba8555.
https://doi.org/10.1126/sciadv.aba8555
[68]  Kouba, B.R., de Araujo Borba, L., Borges de Souza, P., Gil-Mohapel, J. and Rodrigues, A.L.S. (2024) Role of Inflammatory Mechanisms in Major Depressive Disorder: From Etiology to Potential Pharmacological Targets. Cells, 13, Article 423.
https://doi.org/10.3390/cells13050423
[69]  Faulkner, I.E., Pajak, R.Z., Harte, M.K., Glazier, J.D. and Hager, R. (2024) Voltage-Gated Potassium Channels as a Potential Therapeutic Target for the Treatment of Neurological and Psychiatric Disorders. Frontiers in Cellular Neuroscience, 18, Article 1449151.
https://doi.org/10.3389/fncel.2024.1449151
[70]  Smolin, B., Karry, R., Gal-Ben-Ari, S. and Ben-Shachar, D. (2011) Differential Expression of Genes Encoding Neuronal Ion-Channel Subunits in Major Depression, Bipolar Disorder and Schizophrenia: Implications for Pathophysiology. The International Journal of Neuropsychopharmacology, 15, 869-882.
https://doi.org/10.1017/s1461145711001428
[71]  Zhang, J., Zhu, Y., Zhang, M., Yan, J., Zheng, Y., Yao, L., et al. (2024) Potassium Channels in Depression: Emerging Roles and Potential Targets. Cell & Bioscience, 14, 869-882.
https://doi.org/10.1186/s13578-024-01319-0
[72]  Meshkat, S., Kwan, A.T.H., Le, G.H., Wong, S., Rhee, T.G., Ho, R., et al. (2024) The Role of KCNQ Channel Activators in Management of Major Depressive Disorder. Journal of Affective Disorders, 359, 364-372.
https://doi.org/10.1016/j.jad.2024.05.067
[73]  Friedman, A.K., Juarez, B., Ku, S.M., Zhang, H., Calizo, R.C., Walsh, J.J., et al. (2016) KCNQ Channel Openers Reverse Depressive Symptoms via an Active Resilience Mechanism. Nature Communications, 7, Article No. 11671.
https://doi.org/10.1038/ncomms11671

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133