|
Radhakrishnan-Kundu-Lakshmanan方程的分支相图及非线性波解
|
Abstract:
本文应用动力系统分支方法研究了Radhakrishnan-Kundu-Lakshmanan方程的分支相图和非线性波解,给出了μ < 0和μ > 0时RKL方程的分支相图,同时,对λ、τ、μ和n的不同参数值条件下的分析,结合特殊轨道进行积分得到了RKL方程的12个新的非线性波解。
In this work, the bifurcation phase portraits and exact nonlinear solutions of the Radhakrishnan-Kundu-Lakshmanan equation (RKL) are studied by using the bifurcation method of dynamical systems. The bifurcation phase portraits of the RKL equation are presented when μ < 0 and μ > 0. Additionally, by analyzing different parameter values of λ, τ, μ and n, and integrating along specific orbits, 12 new nonlinear wave solutions of the RKL equation are obtained.
[1] | Malik, S., Almusawa, H., Kumar, S., Wazwaz, A. and Osman, M.S. (2021) A (2 + 1)-Dimensional Kadomtsev-Petviashvili Equation with Competing Dispersion Effect: Painlevé Analysis, Dynamical Behavior and Invariant Solutions. Results in Physics, 23, Article ID: 104043. https://doi.org/10.1016/j.rinp.2021.104043 |
[2] | Ansar, R., Abbas, M., Mohammed, P.O., Al-Sarairah, E., Gepreel, K.A. and Soliman, M.S. (2023) Dynamical Study of Coupled Riemann Wave Equation Involving Conformable, Beta, and M-Truncated Derivatives via Two Efficient Analytical Methods. Symmetry, 15, Article No. 1293. https://doi.org/10.3390/sym15071293 |
[3] | HamaRashid, H., Srivastava, H.M., Hama, M., Mohammed, P.O., Almusawa, M.Y. and Baleanu, D. (2023) Novel Algorithms to Approximate the Solution of Nonlinear Integro-Differential Equations of Volterra-Fredholm Integro Type. AIMS Mathematics, 8, 14572-14591. https://doi.org/10.3934/math.2023745 |
[4] | Gu, C.H., Guo, B.L., Li, Y.S., et al. (1995). Soliton Theory and Its Applications. Springer. |
[5] | Gleick, J. (1995) Chaos: Making a New Science. Zhang, J.Y., Trans., Viking Penguin. |
[6] | Alkhidhr, H.A., Abdelwahed, H.G., Abdelrahman, M.A.E. and Alghanim, S. (2022) Some Solutions for a Stochastic NLSE in the Unstable and Higher Order Dispersive Environments. Results in Physics, 34, Article ID: 105242. https://doi.org/10.1016/j.rinp.2022.105242 |
[7] | Zhang, Q., Xiong, M. and Chen, L. (2019) Exact Travelling Wave Solutions of Two Nonlinear Schrödinger Equations by Using Two Methods. Journal of Applied Mathematics and Physics, 7, 3101-3115. https://doi.org/10.4236/jamp.2019.712218 |
[8] | Kudryashov, N.A. (2021) The Radhakrishnan-Kundu-Lakshmanan Equation with Arbitrary Refractive Index and Its Exact Solutions. Optik, 238, Article ID: 166738. https://doi.org/10.1016/j.ijleo.2021.166738 |
[9] | Eldidamony, H.A., Ahmed, H.M., Zaghrout, A.S., Ali, Y.S. and Arnous, A.H. (2022) Mathematical Methods for Construction New Soliton Solutions of Radhakrishnan-Kundu Lakshmanan Equation. Alexandria Engineering Journal, 61, 7111-7120. https://doi.org/10.1016/j.aej.2021.12.053 |
[10] | Ali, K.K., Mehanna, M.S., Akbar, M.A. and Chakrabarti, P. (2022) Analytical Soliton Solutions of the Coupled Radhakrishnan‐Kundu‐Lakshmanan Equation via Three Techniques. Journal of Mathematics, 2022, Article ID: 8419403. https://doi.org/10.1155/2022/8419403 |
[11] | Zayed, E.M.E., Alngar, M.E.M., Biswas, A., Yıldırım, Y., Guggilla, P., Khan, S., et al. (2021) Cubic-Quartic Optical Soliton Perturbation with Lakshmanan-Porsezian-Daniel Model. Optik, 233, Article ID: 166385. https://doi.org/10.1016/j.ijleo.2021.166385 |
[12] | Bansal, A., Biswas, A., Mahmood, M.F., Zhou, Q., Mirzazadeh, M., Alshomrani, A.S., et al. (2018) Optical Soliton Perturbation with Radhakrishnan-Kundu-Lakshmanan Equation by Lie Group Analysis. Optik, 163, 137-141. https://doi.org/10.1016/j.ijleo.2018.02.104 |
[13] | Biswas, A., Ekici, M., Sonmezoglu, A. and Alshomrani, A.S. (2018) Optical Solitons with Radhakrishnan-Kundu-Lakshmanan Equation by Extended Trial Function Scheme. Optik, 160, 415-427. https://doi.org/10.1016/j.ijleo.2018.02.017 |
[14] | Yıldırım, Y., Biswas, A., Ekici, M., Triki, H., Gonzalez-Gaxiola, O., Alzahrani, A.K., et al. (2020) Optical Solitons in Birefringent Fibers for Radhakrishnan-Kundu-Lakshmanan Equation with Five Prolific Integration Norms. Optik, 208, Article ID: 164550. https://doi.org/10.1016/j.ijleo.2020.164550 |
[15] | Arshed, S., Biswas, A., Guggilla, P. and Alshomrani, A.S. (2020) Optical Solitons for Radhakrishnan-Kundu-Lakshmanan Equation with Full Nonlinearity. Physics Letters A, 384, Article ID: 126191. https://doi.org/10.1016/j.physleta.2019.126191 |
[16] | Mahmood, A., Srivastava, H.M., Abbas, M., Abdullah, F.A., Othman Mohammed, P., Baleanu, D., et al. (2023) Optical Soliton Solutions of the Coupled Radhakrishnan-Kundu-Lakshmanan Equation by Using the Extended Direct Algebraic Approach. Heliyon, 9, e20852. https://doi.org/10.1016/j.heliyon.2023.e20852 |
[17] | Peng, C. and Li, Z. (2023) Soliton Solutions and Dynamics Analysis of Fractional Radhakrishnan-Kundu-Lakshmanan Equation with Multiplicative Noise in the Stratonovich Sense. Results in Physics, 53, Article ID: 106985. https://doi.org/10.1016/j.rinp.2023.106985 |
[18] | Samir, I., Ahmed, H.M., Alkhatib, S. and Mohamed, E.M. (2023) Construction of Wave Solutions for Stochastic Radhakrishnan-Kundu-Lakshmanan Equation Using Modified Extended Direct Algebraic Technique. Results in Physics, 55, Article ID: 107191. https://doi.org/10.1016/j.rinp.2023.107191 |
[19] | Hussain, Z., Rehman, Z.U., Abbas, T., Smida, K., Le, Q.H., Abdelmalek, Z., et al. (2023) Analysis of Bifurcation and Chaos in the Traveling Wave Solution in Optical Fibers Using the Radhakrishnan-Kundu-Lakshmanan Equation. Results in Physics, 55, Article ID: 107145. https://doi.org/10.1016/j.rinp.2023.107145 |
[20] | Arnous, A.H., Biswas, A., Kara, A.H., Yıldırım, Y., Moraru, L., Moldovanu, S., et al. (2023) Dispersive Optical Solitons and Conservation Laws of Radhakrishnan-Kundu-Lakshmanan Equation with Dual-Power Law Nonlinearity. Heliyon, 9, e14036. https://doi.org/10.1016/j.heliyon.2023.e14036 |
[21] | Song, M. and Yang, C. (2009) Application of Bifurcation Method to a Generalized Modified Boussinesq Equation. Kyungpook Mathematical Journal, 49, 81-93. https://doi.org/10.5666/kmj.2009.49.1.081 |
[22] | Song, M. and Wu, S. (2023) Bifurcation Phase Portraits and Nonlinear Wave Solutions for the Modified Konopelchenko-Dubrovsky Equation. Alexandria Engineering Journal, 79, 502-507. https://doi.org/10.1016/j.aej.2023.08.018 |
[23] | 林姿妤, 宋明. 纵波运动方程的分支分析和行波解[J]. 应用数学, 2023, 36(2): 444-453. |
[24] | 宋明, 吴沈辉. (2 + 1)维非线性耦合型Burgers方程的各种精确行波解[J]. 重庆师范大学学报(自然科学版), 2022, 39(2): 76-83. |
[25] | 吴沈辉, 宋明. 带有量子修正的Zakharo方程的精确非线性波解[J]. 浙江大学学报(理学版), 2023, 50(1):30-37. |