%0 Journal Article %T Radhakrishnan-Kundu-Lakshmanan方程的分支相图及非线性波解
Bifurcation Phase Portraits and Nonlinear Wave Solutions for the Radhakrishnan-Kundu-Lakshmanan Equation %A 傅健娇 %A 周丹丹 %A 许悦 %A 马天胤 %A 刘猛 %J Advances in Applied Mathematics %P 357-370 %@ 2324-8009 %D 2025 %I Hans Publishing %R 10.12677/aam.2025.145265 %X 本文应用动力系统分支方法研究了Radhakrishnan-Kundu-Lakshmanan方程的分支相图和非线性波解,给出了µ < 0和µ > 0时RKL方程的分支相图,同时,对λτµn的不同参数值条件下的分析,结合特殊轨道进行积分得到了RKL方程的12个新的非线性波解。
In this work, the bifurcation phase portraits and exact nonlinear solutions of the Radhakrishnan-Kundu-Lakshmanan equation (RKL) are studied by using the bifurcation method of dynamical systems. The bifurcation phase portraits of the RKL equation are presented when µ < 0 and µ > 0. Additionally, by analyzing different parameter values of λ, τ, µ and n, and integrating along specific orbits, 12 new nonlinear wave solutions of the RKL equation are obtained. %K Radhakrishnan-Kundu-Lakshmanan方程, %K 分支方法, %K 分支相图, %K 非线性波解
Radhakrishnan-Kundu-Lakshmanan Equation %K Bifurcation Theory %K Bifurcation Phase Portraits %K Nonlinear Wave Solution %U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=115574