%0 Journal Article
%T Radhakrishnan-Kundu-Lakshmanan方程的分支相图及非线性波解
Bifurcation Phase Portraits and Nonlinear Wave Solutions for the Radhakrishnan-Kundu-Lakshmanan Equation
%A 傅健娇
%A 周丹丹
%A 许悦
%A 马天胤
%A 刘猛
%J Advances in Applied Mathematics
%P 357-370
%@ 2324-8009
%D 2025
%I Hans Publishing
%R 10.12677/aam.2025.145265
%X 本文应用动力系统分支方法研究了Radhakrishnan-Kundu-Lakshmanan方程的分支相图和非线性波解,给出了µ < 0和µ > 0时RKL方程的分支相图,同时,对λ、τ、µ和n的不同参数值条件下的分析,结合特殊轨道进行积分得到了RKL方程的12个新的非线性波解。
In this work, the bifurcation phase portraits and exact nonlinear solutions of the Radhakrishnan-Kundu-Lakshmanan equation (RKL) are studied by using the bifurcation method of dynamical systems. The bifurcation phase portraits of the RKL equation are presented when µ < 0 and µ > 0. Additionally, by analyzing different parameter values of λ, τ, µ and n, and integrating along specific orbits, 12 new nonlinear wave solutions of the RKL equation are obtained.
%K Radhakrishnan-Kundu-Lakshmanan方程,
%K 分支方法,
%K 分支相图,
%K 非线性波解
Radhakrishnan-Kundu-Lakshmanan Equation
%K Bifurcation Theory
%K Bifurcation Phase Portraits
%K Nonlinear Wave Solution
%U http://www.hanspub.org/journal/PaperInformation.aspx?PaperID=115574