全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于CEV模型的上证50股指期权定价研究
Research on the Pricing of SSE 50 Index Options Based on the CEV Model

DOI: 10.12677/ecl.2025.1451553, PP. 2512-2521

Keywords: 上证50股指期权,CEV模型,期权定价,多因素敏感性分析
SSE 50 Index Options
, CEV Model, Option Pricing, Multi-Factor Sensitivity Analysis

Full-Text   Cite this paper   Add to My Lib

Abstract:

股指期权作为中国市场中较新的金融产品,能够有效对冲市场波动。传统期权评估方法基于波动率恒定假设具有局限性,无法解释尖峰厚尾、波动率微笑等反市场现象;而方差常弹性(Constant elasticity of variance, CEV)模型将假定推广到波动率变化的情况,更符合实际市场。本研究探讨CEV模型在上证50股指期权价值评估中的应用及有效性,并对不同参数组合下的CEV期权定价结果进行多层次分析。通过单因素及多因素敏感性分析,得到期权在误差最小时的不确定因素取值及期权理论价值。CEV期权定价结果非常贴近市场价格,具有更准确的预测效果,可以作为投资者期权定价及风险管理决策的理论依据。
As a relatively new financial product in the Chinese market, index options can effectively hedge against market volatility. Traditional option evaluation methods, based on the assumption of constant volatility, have limitations and cannot explain market anomalies such as leptokurtosis and volatility smiles. The Constant Elasticity of Variance (CEV) model extends this assumption to accommodate changing volatility, making it more aligned with actual market conditions. This paper uses the SSE 50 as an example to explore the application and effectiveness of the CEV model in evaluating the value of SSE 50 index options. It conducts a multi-level analysis of CEV option pricing results under different parameter combinations. Through single-factor and multi-factor sensitivity analyses, the study identifies the values of uncertain factors and theoretical option values that minimize errors. The CEV option pricing results closely align with market prices, offering more accurate predictive capabilities. This can serve as a theoretical basis for investors in option pricing and risk management decisions.

References

[1]  崔文瑶. 我国股指期权的价格发现功能测度及影响因素研究[D]: [硕士学位论文]. 济南: 山东财经大学, 2024.
[2]  Black, F. and Scholes, M. (1973) The Pricing of Options and Corporate Liabilities. Journal of Political Economy, 81, 637-654.
https://doi.org/10.1086/260062
[3]  Cox, J.C. and Ross, S.A. (1976) The Valuation of Options for Alternative Stochastic Processes. Journal of Financial Economics, 3, 145-166.
https://doi.org/10.1016/0304-405x(76)90023-4
[4]  王智宇, 李景诗, 朱本喜, 宋海明. 求解CEV模型下美式看跌期权的有限差分法[J]. 吉林大学学报(理学版), 2014, 52(3): 489-493.
[5]  郭宗怀, 胡兵, 徐友才. CEV模型下支付红利的美式看跌期权的差分法[J]. 四川大学学报(自然科学版), 2018, 55(6): 1162-1166.
[6]  刘小涛, 刘海龙. CEV模型下基于双曲绝对风险厌恶效用的最优投资策略[J]. 系统工程理论与实践, 2020, 40(1): 1-12.
[7]  刘小涛, 刘海龙. CEV模型下考虑风险相关性的保险组合时间一致性投资策略[J]. 系统管理学报, 2022, 31(1): 53-65.
[8]  李昕. CEV模型最优参数研究[D]: [硕士学位论文]. 合肥: 中国科学技术大学, 2009.
[9]  Schroder, M. (1989) Computing the Constant Elasticity of Variance Option Pricing Formula. The Journal of Finance, 44, 211-219.
https://doi.org/10.1111/j.1540-6261.1989.tb02414.x
[10]  Zhang, S., Yang, H. and Yang, Y. (2019) A Multiquadric Quasi-Interpolations Method for CEV Option Pricing Model. Journal of Computational and Applied Mathematics, 347, 1-11.
https://doi.org/10.1016/j.cam.2018.03.046
[11]  吴鑫育, 尹学宝, 谢海滨, 马超群. 基于成分Realized EGARCH模型的期权定价研究[J/OL]. 中国管理科学, 1-17.
http://www.zgglkx.com/CN/abstract/abstract19343.shtml, 2025-02-09.
[12]  周倜, 王云奇. 高阶矩风险与市场收益: 来自中国期权市场的证据[J]. 管理科学学报, 2024, 27(5): 122-140.
[13]  刘伟, 吕俊娜, 邹庆. 收益不确定下交通BOT项目特许期决策模型[J]. 系统工程, 2012, 30(12): 51-56.
[14]  李明顺, 陈涛, 滕敏. 交通基础设施PPP项目实物期权定价及敏感性分析[J]. 系统工程, 2011, 29(3): 67-73.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133