|
E-Commerce Letters 2025
算法推荐对国际贸易流程的影响研究
|
Abstract:
算法推荐系统作为跨境电子商务关键技术,持续重构国际贸易流程。本文探讨算法推荐在需求预测、供应链协同、营销策略优化等领域的应用,分析其对效率提升的作用机制,研究显示智能决策系统展现明确优势。文章剖析数据隐私、算法偏见、技术依赖等技术挑战,建立针对性解决方案框架。研究表明,建立合规数据治理框架有助于平衡创新与伦理约束;增强算法透明度与公平性可提升系统韧性;推动跨文化适配机制促进全球治理协作;构建责任追溯体系保障贸易可持续性。后续研究需拓展算法推荐与区块链、物联网的融合场景,完善跨学科治理框架,构建技术赋能与社会效益协调发展的生态体系——这些探索将推动智能技术在全球贸易中的价值释放。
Algorithm recommendation system, as a key technology in cross-border e-commerce, continues to reconstruct the international trade process. This article explores the application of algorithm recommendation in demand forecasting, supply chain collaboration, marketing strategy optimization, and other fields, analyzes its mechanism of efficiency improvement, and shows that intelligent decision-making systems exhibit clear advantages. The article analyzes technical challenges such as data privacy, algorithm bias, and technology dependence, and establishes a targeted solution framework. Research has shown that establishing a compliant data governance framework helps balance innovation and ethical constraints; enhancing algorithm transparency and fairness can improve system resilience, promote cross-cultural adaptation mechanisms to facilitate global governance collaboration and establish a responsibility traceability system to ensure the sustainability of trade. Subsequent research needs to expand the integration scenarios of algorithm recommendation with blockchain and the Internet of Things, improve interdisciplinary governance frameworks, and build an ecosystem that balances technological empowerment and social benefits. These explorations will promote the value release of intelligent technology in global trade.
[1] | 王玉龙, 曾润喜. 算法偏见的生成逻辑与治理[J]. 电子政务, 1-8[2025-03-31]. https://kns.cnki.net/kcms2/article/abstract?v=fSCzX0TVvUgXcQwtqVMIvJlQHXyucJaS4wkGMOxOw1NhwVuyhus5vsM2SYY-qjwrPfe60aYxH9pbecV2JtR1laQCRjRf2UHjZJCEifgqUbIdTUXFDJ9QQEDttgetDABTEGzOQ4D5qWMN7l1rt8n0cHAQRhbmDV8VuFtIIZITNxw=&uniplatform=NZKPT |
[2] | 刘红军. 电子商务环境下的国际贸易新趋势及对策研究[J]. 商场现代化, 2024(21): 68-70. |
[3] | 闫超. 智能算法在供应链管理优化中的应用[J]. 电子技术, 2024, 53(10): 268-269. |
[4] | 徐强. 短视频营销中的推荐算法与用户体验优化[J]. 现代营销(下旬刊), 2025(4): 67-69. |
[5] | 苗芳艳. 风险、成因与化解: 语境主义视角下生成式人工智能的数据操纵、算法偏见与伦理审视[J]. 昆明理工大学学报(社会科学版), 2025, 25(2): 49-56. |
[6] | 吴丹, 武瑜轩. 个性化推荐算法透明度对用户感知可信度的影响[J]. 情报理论与实践, 2024, 47(11): 91-100. |
[7] | 谢俊陶, 彭基. 智能营销传播中算法偏见的伦理规制[J]. 中阿科技论坛(中英文), 2024(11): 168-172. |