全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Design of Ternary Field-Effect Transistors, DRAM Memory and NAND Flash Memory

DOI: 10.4236/wjet.2025.132020, PP. 307-328

Keywords: Ternary, MOSFET Field-Effect Transistor, FinFET Field-Effect Transistor, Arithmetic Operations, Logical Operation, DRAM Memory, NAND Flash Memory

Full-Text   Cite this paper   Add to My Lib

Abstract:

Based on the binary MOSFET and FinFET field-effect transistors, we have respectively designed ternary 0, +1, ?1 digital signals using the improved MOSFET and FinFET field-effect transistors. On this basis, we have given the design principle and structure of ternary DRAM memory, that is, the reading +1, ?1 and 0, and writing +1, ?1 and 0 respectively, and also have given NAND flash memory, which include erasing operation, programming operation and reading operation. In addition, the arithmetic and logical operation rules of ternary are given. All the above works will lay a very important foundation for the development of ternary computer. All the above work will lay a very important foundation for the development of ternary computer.

References

[1]  Cui, Y., Zhong, Z., Wang, D., Wang, W.U. and Lieber, C.M. (2003) High Performance Silicon Nanowire Field Effect Transistors. Nano Letters, 3, 149-152.
https://doi.org/10.1021/nl025875l
[2]  Moore, G.E. (1998) Cramming More Components onto Integrated Circuits. Proceedings of the IEEE, 86, 82-85.
https://doi.org/10.1109/jproc.1998.658762
[3]  Dennard, R.H., Gaensslen, F.H., Yu, H., Rideout, V.L., Bassous, E. and LeBlanc, A.R. (1974) Design of Ion-Implanted Mosfet’s with Very Small Physical Dimensions. IEEE Journal of Solid-State Circuits, 9, 256-268.
https://doi.org/10.1109/jssc.1974.1050511
[4]  Jaisawal, R.K., Kondekar, P.N., Yadav, S., Upadhyay, P., Awadhiya, B. and Rathore, S. (2022) Insights into the Operation of Negative Capacitance FinFET for Low Power Logic Applications. Microelectronics Journal, 119, 105321.
https://doi.org/10.1016/j.mejo.2021.105321
[5]  Gul, W., Shams, M. and Al-Khalili, D. (2023) FinFET 6T-SRAM All-Digital Compute-In-Memory for Artificial Intelligence Applications: An Overview and Analysis. Micromachines, 14, Article 1535.
https://doi.org/10.3390/mi14081535
[6]  Das, U.K. and Bhattacharyya, T.K. (2020) Opportunities in Device Scaling for 3-nm Node and Beyond: FinFET versus GAA-FET versus UFET. IEEE Transactions on Electron Devices, 67, 2633-2638.
https://doi.org/10.1109/ted.2020.2987139
[7]  Hu, C.M., Bokor, J., King, T.-J., Anderson, E., Kuo, C., Asano, K., et al. (2000) FinFET-a Self-Aligned Double-Gate MOSFET Scalable to 20 nm. IEEE Transactions on Electron Devices, 47, 2320-2325.
https://doi.org/10.1109/16.887014
[8]  Huang, X.J., Lee, W.-C., Kuo, C., Hisamoto, D., Chang, L., Kedzierski, J., et al. (2001) Sub-50 nm P-Channel FinFET. IEEE Transactions on Electron Devices, 48, 880-886.
https://doi.org/10.1109/16.918235
[9]  Park, J.-T., Colinge, J.-P. and Diaz, C.H. (2001) Pi-Gate SOI MOSFET. IEEE Electron Device Letters, 22, 405-406.
https://doi.org/10.1109/55.936358
[10]  Lime, F., Iniguez, B. and Moldovan, O. (2008) A Quasi-Two-Dimensional Compact Drain–Current Model for Undoped Symmetric Double-Gate MOSFETS Including Short-Channel Effects. IEEE Transactions on Electron Devices, 55, 1441-1448.
https://doi.org/10.1109/ted.2008.921980
[11]  Mahapatra, S., BharathKumar, P. and Alam, M.A. (2004) Investigation and Modeling of Interface and Bulk Trap Generation during Negative Bias Temperature Instability of P-MOSFETS. IEEE Transactions on Electron Devices, 51, 1371-1379.
https://doi.org/10.1109/ted.2004.833592
[12]  Wang, R.S., Zhuge, J., Huang, R., Kim, D.-W., Park, D.G. and Wang, Y.Y. (2009) Investigation on Self-Heating Effect in Gate-All-Around Silicon Nanowire MOSFETS from Top-Down Approach. IEEE Electron Device Letters, 30, 559-561.
https://doi.org/10.1109/led.2009.2016764
[13]  Liu, C., Yu, T., Wang, R., Zhang, L., Huang, R., Kim, D., et al. (2010) Negative-bias Temperature Instability in Gate-All-Around Silicon Nanowire MOSFETS: Characteristic Modeling and the Impact on Circuit Aging. IEEE Transactions on Electron Devices, 57, 3442-3450.
https://doi.org/10.1109/ted.2010.2077638
[14]  Wu, Y., Huang, C., Yang, K., Yu, Y., Zhao, C., Liu, H., et al. (2020) An Improved Surface-Potential-Based Model for MOSFETS Considering the Carrier Gaussian Distribution. IEEE Transactions on Microwave Theory and Techniques, 68, 4082-4090.
https://doi.org/10.1109/tmtt.2020.2997819
[15]  Hong, B.H., Cho, N., Lee, S.J., Yu, Y.S., Choi, L., Jung, Y.C., et al. (2011) Subthreshold Degradation of Gate-All-Around Silicon Nanowire Field-Effect Transistors: Effect of Interface Trap Charge. IEEE Electron Device Letters, 32, 1179-1181.
https://doi.org/10.1109/led.2011.2159473
[16]  Majumdar, A., Ren, Z., Koester, S.J. and Haensch, W. (2009) Undoped-body Extremely Thin SOI MOSFETS with Back Gates. IEEE Transactions on Electron Devices, 56, 2270-2276.
https://doi.org/10.1109/ted.2009.2028057
[17]  Yan, R.-H., Ourmazd, A. and Lee, K.F. (1992) Scaling the Si MOSFET: From Bulk to SOI to Bulk. IEEE Transactions on Electron Devices, 39, 1704-1710.
https://doi.org/10.1109/16.141237
[18]  Suzuki, K., Tanaka, T., Tosaka, Y., Horie, H. and Arimoto, Y. (1993) Scaling Theory for Double-Gate SOI MOSFET’s. IEEE Transactions on Electron Devices, 40, 2326-2329.
https://doi.org/10.1109/16.249482
[19]  Bangsaruntip, S., Cohen, G.M., Majumdar, A. and Sleight, J.W. (2010) Universality of Short-Channel Effects in Undoped-Body Silicon Nanowire MOSFETS. IEEE Electron Device Letters, 31, 903-905.
https://doi.org/10.1109/led.2010.2052231

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133